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A solution of the time-independent electronic Schrödinger 
equation of a given atomic system provides, in principle, full 
access to its chemical properties. This equation can be solved 

analytically only for an isolated hydrogen atom, but solid-state 
physics and quantum chemistry have been remarkably successful 
in developing numerical approximation methods1. For small mole-
cules containing up to a few tens of electrons, methods based on the 
configuration-interaction and the closely related coupled-cluster 
approaches or the multideterminant quantum Monte Carlo (QMC) 
can reach impressive accuracy of up to six significant digits in the 
total electronic energy2.

Unfortunately, the computational cost of such high-accuracy 
methods increases with a high power of the number of electrons, N, 
making these methods impractical for most relevant molecules or 
materials. Computationally less demanding methods, such as den-
sity functional theory (DFT), can scale to larger molecules, but at 
the price of limited accuracy. Fundamentally, high-accuracy meth-
ods scale unfavourably with N because the dimension of the solu-
tion space of the Schrödinger equation for a many-body problem 
scales exponentially. A distinct but related problem that appears 
in some approaches is the so-called sign problem originating from 
the Pauli exclusion principle3. The trade-off between accuracy and 
computational cost is apparent when considering that most quan-
tum chemistry methods represent electronic wavefunctions by 
linear combinations of Slater determinants. A Slater matrix is con-
structed by selecting N out of M > N molecular orbitals, and assign-
ing N electrons to them, resulting in a combinatorial growth of all 
possible matrices with system size.

The Slater determinants have different roles in different quan-
tum chemistry methods (Fig. 1). In the configuration-interaction 
and coupled-cluster approaches, the electronic problem is solved 
entirely in the basis of the determinants (second quantization), and 
as such their number in typical applications is the largest, as the 
determinant expansion must recover all many-body interactions 
that are missing in individual determinants4. Stochastic methods 
that sample over vast determinant spaces have been developed5,6, 

but the underlying scaling trap persists nevertheless. Recent work 
by Choo et al. suggests that the number of required determinants 
can be reduced with the use of neural networks7, but whether this 
would also reduce the scaling issue has yet to be demonstrated.

Conventional QMC methods8–10 solve the electronic problem in 
real space (first quantization), and treat a large portion of the corre-
lation in the electronic motion explicitly, which greatly reduces the 
number of required determinants. Standard QMC variants are still 
practical for systems with hundreds of electrons, such as supramo-
lecular complexes11 and molecular crystals12. Even though only a sin-
gle determinant can be typically used for such large systems, QMC 
still outperforms other electronic-structure methods applicable to 
such systems, such as DFT or the random-phase approximation. 
However, for small systems, where second-quantized approaches are 
applicable, standard QMC methods need to use at least hundreds of 
determinants to be competitive, and this number increases rapidly 
with N. The large number of determinants is necessary to accurately 
represent the nodal surface of the wavefunction, which is other-
wise difficult to improve with standard real-space QMC methods. 
A key development enabling the progress in the present work is the 
real-space backflow technique13. The idea of the backflow technique 
is to transform the electrons into pseudoparticles, the position of 
each of which depends on the positions of all the electrons, and this 
many-body mixing then leads to an improved nodal surface14,15. 
While the traditional backflow technique does not reach the accu-
racy of the large determinant expansions and does not generalize 
well to larger systems, Luo et al. recently showed that representing 
the backflow with a neural network is a powerful generalization16.

Machine learning has had a great impact on quantum chemis-
try, especially in the case of the supervised learning and prediction 
of electronic energies17–24, electron densities25 and molecular orbit-
als26. This approach entirely avoids the solution of the Schrödinger 
equation, at the price of requiring datasets of preexisting solutions, 
obtained for instance by DFT or the coupled-cluster method.

By contrast, the direct representation of correlated wavefunc-
tions with neural networks and their unsupervised training via the 
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variational principle, first proposed by Carleo and Troyer for dis-
crete spin lattice systems27, is an ab initio approach that requires no 
preexisting data and has no fundamental limits to its accuracy. It is 
motivated by the fact that neural networks are universal function 
approximators and could therefore provide more efficient means for 
approximating the exponentially scaling complexity of many-body 
quantum systems. The initial attempts on lattice systems were later 
generalized to bosons in real space28,29 and even electrons in real 
space30, but the latter approach does not use a wavefunction ansatz 
in the form of a Slater determinant, and perhaps for that reason does 
not reach the accuracy of the baseline Hartree–Fock (HF) method 
for some systems.

In this work, we develop PauliNet, a deep-learning QMC 
approach that replaces existing ad hoc functional forms used in 
the standard Jastrow factor and backflow transformation with 
more powerful deep neural network (DNN) representations. 
Besides the sheer gain in expressive power, our neural network 
architecture is specifically designed to encode the physics of 
valid wavefunctions and incorporates the multireference HF 
method as a baseline. These physically motivated choices are 
essential to obtain a method that not only is highly accurate, 
but also converges robustly, while maintaining computational 
efficiency. Using several test systems, we demonstrate that our 
neural network ansatz substantially outperforms the accuracy of 
state-of-the-art wavefunction ansatzes using a similar number 
of determinants. Thanks to the trainable backflow ansatz, high 
accuracy can be obtained with orders of magnitude fewer deter-
minants compared to traditional QMC methods. Our method 
has the asymptotic scaling of N4, and we expect that it will be 
feasible to apply it to much larger systems than is currently pos-
sible with existing high-accuracy methods. We demonstrate this 
with an accurate calculation of the transition-state energy of 
the 28-electron cyclobutadiene molecule, which was previously 
achievable only with highly specialized methods.

The parallel work of Pfau et al. follows the same basic idea as 
ours, but differs in one important aspect31. Their architecture does 
not encode any physical knowledge about wavefunctions besides 
the essential antisymmetry, which is compensated by a much larger 
number of optimized parameters. This difference likely leads to 
the higher computational cost per iteration. In addition, their 

architecture is trained substantially longer and as a consequence 
reaches higher accuracy for some systems.

results
DNN electronic wavefunction ansatz. At the core of our 
deep-learning approach to the electronic Schrödinger equation is 
a wavefunction ansatz, dubbed PauliNet, which incorporates both 
the well-established essential physics of electronic wavefunctions—
Slater determinants, multideterminant expansion, Jastrow factor, 
backflow transformation and cusp conditions—as well as DNNs 
capable of encoding the complex features of the electronic motion 
in heterogeneous molecular systems. Our proposed trial wavefunc-
tion, ψθ(r), r = (r1, …, rN), is of the multideterminant Slater–Jastrow–
backflow type32, where both the Jastrow factor, J, and the backflow, f, 
are represented by DNNs with trainable parameters θ (Fig. 2),

ψθðrÞ ¼ eγðrÞþJθðrÞ P
p cp det½~φ
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Fig. 1 | Combinatorial explosion of the number of Slater determinants in 
quantum chemistry. Both configuration-interaction and multideterminant 
QMC approaches suffer from the rapid scaling of the number of Slater 
determinants with system size, which in both cases can be reduced with 
neural networks (NNs). The multideterminant QMC combined with neural 
networks is the approach developed in this work. The plot shows typical 
numbers of Slater determinants used by high-accuracy quantum chemistry 
methods in state-of-the-art calculations on atomic systems with at most a 
few tens of electrons.
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Fig. 2 | architecture of the newly developed PauliNet wavefunction 
ansatz. The information flows from the input electron and nuclear 
coordinates, r and r, to the output wavefunction value, Ψ. Modelling the 
wavefunction via Jastrow and backflow functions is common in QMC, but 
here these functions are learned with DNNs. Ndet, number of determinants.
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While the expressiveness of PauliNet is contained in the Jastrow fac-
tor and backflow DNNs, the physics is encoded by the determinant 
form; the one-electron molecular orbitals, φμ; and the electronic 
cusps, γ, in the following way.

Every valid electronic wavefunction must be antisymmetric with 
respect to the exchange of same-spin electrons,

ψð¼ ; ri; ¼ ; rj; ¼ Þ ¼ �ψð¼ ; rj; ¼ ; ri; ¼ Þ ð2Þ

As is common in quantum chemistry, we enforce antisymmetry via 
matrix determinants, as determinants change sign upon exchanging 
any two rows or columns.

To ensure a good starting point for the variational optimiza-
tion problem, we exploit the approximate HF method. Specifically, 
we use a multireference HF calculation with a small complete 
active space, and select the most dominant determinants and their 
orbitals based on the magnitude of their linear coefficient. The 
HF-optimized one-electron molecular orbitals, φμ(r), are then used 
as an input to PauliNet and are modified during training only by the 
backflow transformation.

Any ground-state electronic wavefunction obeys exact asymp-
totic behaviour defined by the cusp conditions as electrons approach 

each other and the nuclei33. We chose to build the cusp conditions 
directly into the PauliNet functional form as this makes the training 
more efficient as well as stable by removing divergences from the 
local electronic energy. We incorporate the nuclear cusps by modi-
fying the molecular orbitals using the technique from Ma et al.34 and 
the electronic cusps by the fixed cusp function, γ(r). We ensure that 
the trainable Jastrow factor and backflow DNNs are cuspless, so as 
to maintain the enforced cusp behaviour (see Methods for details).

Robust deep Jastrow factor and backflow. PauliNet differs from 
conventional QMC ansatzes by representing the Jastrow factor and 
backflow functions with specialized DNNs. To retain the antisym-
metry of the wavefunction, as enforced by the Slater determinants, 
the Jastrow factor and backflow DNNs are constructed to be invari-
ant and equivariant, respectively, with respect to the exchange of 
same-spin electrons, Pij

I
,

JðPijrÞ ¼ JðrÞ; Pijf μiðrÞ ¼ f μjðPijrÞ ð3Þ

The Jastrow factor is a nonnegative totally symmetric function, 
which can encode complex electron correlations into the wavefunc-
tion, but cannot modify the nodal surface inherited from the deter-
minant expansion.

We found that attempting to express the standard backflow 
form of coupled electron coordinates with DNNs leads to a diffi-
cult optimization problem. Instead, the PauliNet backflow has the 
form of multiplying the bare one-electron molecular orbitals with 
many-electron equivariant functions, f (equation (1)). In combina-
tion with just a few determinants, this presents a powerful represen-
tation of the electronic nodal surface.
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Fig. 3 | Performance of PauliNet with one and six determinants on atoms 
and diatomic molecules. PauliNet recovers 97% to 99.9% of correlation 
energy with one to two orders of magnitude less determinants than 
standard variational ansatzes. Four variants of PauliNet are shown, single- 
and multideterminant as well as with and without backflow. Data points 
marked with black arrows are outside the y-axis range. The reference 
results are taken from (1) Brown et al.32, (2) Casalegno et al.39, (3) Morales 
et al.2, (4) Lopez Ríos et al.13, (5) Seth et al.40 and (6) Toulouse and 
Umrigar41. Each CSF corresponds to a few to a few dozen determinants, 
depending on the system and the particular method. The numerical data 
can be found in Extended Data Fig. 1.
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The requirements of invariance and equivariance with respect 
to permutation of particles, and the fact that particle interactions 
are a function of their distances, are closely related to construct-
ing DNNs that learn potential energy functions. PauliNet uses 
an adapted form of one such DNN architecture, called SchNet22. 
SchNet is a graph DNN that represents each particle with a vec-
tor in a high-dimensional abstract feature space, xi, which is itera-
tively refined by interactions with other particles through real-space 
trainable convolutions, χθ, which encode the inter-particle distances 
and are invariant with respect to particle exchange,

xðnþ1Þ
i :¼ xðnÞi þ χðnÞθ xðnÞj ; fjrj � rkjg

n o 
ð4Þ

The SchNet architecture and its modifications for PauliNet are 
described in detail in the Methods. After a fixed number of itera-
tions, the final electron representations, xðLÞi

I
, which now encode 

complex many-body electron correlations, are used as an input to 
two trainable functions, ηθ and κθ, which return the Jastrow factor 
and backflow, respectively:

J :¼ ηθ
X

i
xðLÞi

 
; f i :¼ κθ xðLÞi

 
: ð5Þ

Since the feature vectors, xðnÞi
I

, are equivariant with respect to elec-
tron exchange at each iteration, so are the backflow vectors, fi. As a 
result, the Slater determinants in PauliNet produce an antisymmet-
ric wavefunction. Furthermore, J is by construction invariant with 
respect to exchanges of electrons and therefore a symmetric func-
tion that maintains this antisymmetry.

Approaching exact solutions with few determinants. We train 
PauliNet via the variational principle, minimizing the total elec-
tronic energy (variational QMC). The training data are elec-
tron configurations that are generated on the fly by sampling the  

electron distribution, ∣ψ∣2 (see Methods for details). We first investi-
gate the same systems that were used to test DeepWF30, in particular 
the hydrogen molecule (H2), lithium hydride (LiH), beryllium (Be), 
boron (B) and the linear hydrogen chain H10. For the mono- and 
diatomic systems, PauliNet recovers between 97% and 99.9% of the 
electron correlation energy (Fig. 3) after training for tens of min-
utes to a few hours on a single GTX 1080 Ti graphics processing 
unit (GPU), in all cases far beyond the accuracy of DeepWF. We 
compare these results to the standard single-determinant and mul-
tideterminant variational Monte Carlo (VMC) methods with and 
without backflow. In all cases, PauliNet with six determinants is bet-
ter than all single-determinant and few-determinant ansatzes, and 
is only surpassed by trial wavefunctions with tens or hundreds of 
configuration state functions (CSFs), corresponding to hundreds to 
thousands of determinants.

Figure 4 highlights two crucial aspects of our method. First, 
the error in the correlation energy decreases monotonously as the 
training progresses from the initial HF baseline level to the final 
reported values. The learning curves are not yet fully plateaued in 
most cases, demonstrating the high expressiveness of our ansatz, 
and indicating that even higher accuracy could be achieved with 
more computational resources. Second, we compare our full ansatz 
to variants using only a single determinant and variants without 
backflow, and find that both these components are important for 
refining the nodal surface of the HF baseline and thus reaching 
high accuracy. The fact that only a few determinants are sufficient 
to substantially reduce the correlation energy error compared to 
the single-determinant case indicates that deep learning can be an 
efficient tool to reduce the large number of determinants sampled 
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in other VMC approaches that directly operate on determinants 
of fixed orbitals5,7. By having a powerful backflow transformation, 
each additional determinant substantially increases the flexibility of 
the ansatz.

We further analyse the scaling of PauliNet with the number of 
determinants and with system size on a set of four homonuclear 
diatomic molecules from Li2 to C2 (Fig. 5). PauliNet reaches high 
accuracy quickly with increasing but small numbers of determi-
nants. In the regime of a few to a few dozen determinants, PauliNet 
surpasses existing variational results and in most cases reaches 
the accuracy of the corresponding diffusion Monte Carlo (DMC) 
results. We note that DMC can be implemented in a straightfor-
ward manner for our approach and is expected to further increase 
its accuracy.

Capturing strong correlation. Unlike the atoms and diatomics, 
the linear hydrogen chain H10 exhibits strong correlation, which 
describes a situation where the single-determinant or even 
few-determinant description of the HF method is qualitatively 
insufficient, and the correlation energy constitutes a substantial 
part of the electronic energy35. For H10, we recover 98.41(8)% and 
98.4(3)% of the correlation energy in the equilibrium and stretched 
geometries, respectively, using 16 determinants (Fig. 6). The results 
are only slightly worse using a single determinant (98.10(9)% and 
97.5(4)%), but substantially worse when the trainable backflow is 
also switched off (93.7(2)% and 82(2)%). Compared to standard 

VMC ansatzes that were specifically adjusted for this particular 
application35, we reach higher accuracy at equilibrium and compa-
rable accuracy at the dissociated limit.

We make three observations based on these results. First, even 
though the system size and complexity of H10 is notably higher com-
pared to the systems in the previous section, we achieve the same 
level of accuracy while using the same form of the ansatz. Second, 
there is no decrease in accuracy in the stretched geometry due to 
the increased strongly correlated character. Third, adding multiple 
determinants to the ansatz recovers only a fraction of the correla-
tion energy compared to the backflow transformation, highlighting 
the central role of the trainable backflow in PauliNet.

Straightforward generalization to larger molecules. The previous 
two sections demonstrated the performance of PauliNet on rela-
tively small benchmark systems, for which essentially exact results 
are already available from well-established methods. In this section, 
we show that the same PauliNet ansatz scales in a straightforward 
manner to larger molecules with complex electronic structures, 
for which only highly specialized derivatives of standard quan-
tum chemistry methods could deliver satisfactory results as of yet. 
For this purpose, we chose the automerization of cyclobutadiene  
(Fig. 7a, 28 electrons), a chemical process that has received consider-
able attention from both experiment and theory36. The experimental 
estimates of the energy barrier range between 1.6 and 10 kcal mol–1, 
while the standard coupled-cluster method with up to perturbative 
triple excitations (CCSD(T)) predicts 18 kcal mol–1, a twofold overes-
timation. The best computational estimates are available from vari-
ous flavours of the multireference coupled-cluster (MR-CC) theory 
and fall between 7 and 11 kcal mol–1, without a decisive answer as to 
which of the variants is closer to the ground truth.

Using the PauliNet ansatz with ten determinants and the same 
hyperparameters as used for the much smaller systems, we obtain 
all-electron variational energies for the energy minimum and tran-
sition states of cyclobutadiene, and thus for the energy barrier. 
Since the energy barrier is only 0.01% of the total energy, we use a 
modified optimization protocol to stabilize the training of the neu-
ral network with respect to the inherent stochasticity, in which ten 
independent copies are optimized simultaneously and periodically 
synchronized such that the five copies with higher energies are dis-
carded, and the rest duplicated.

With this modification, the total energies converge smoothly  
(Fig. 7b), and by running two independent optimizations with the syn-
chronization period of 250 and 375 iterations, we obtain estimates of 
the energy barrier of 9.9 ± 0.6 and 7.7 ± 0.6 kcal mol–1, respectively. The 
range larger than the respective statistical sampling errors suggests a 
remaining degree of stochasticity in the optimization, but nevertheless 
both results are well within the range spanned by the MR-CC meth-
ods. We note that compared to the MR-CC methods, many of which 
require use of system- and state-specific wavefunction ansatzes, the 
PauliNet ansatz is constructed in essentially the same way for all the 
systems studied in this work. The computational cost of the cyclobuta-
diene optimization is 50 s per iteration on a single GTX 1080 Ti GPU 
for each of the synchronized optimizations.

Discussion
We have designed PauliNet, a DNN representation of electronic 
wavefunctions in real space, and shown that it can outperform 
state-of-the-art variational quantum chemistry methods that do 
not use large determinant expansions. By contrast, our approach 
requires only few determinants, and as a result we anticipate that 
its computational cost scales asymptotically as N4 (N3 for a determi-
nant evaluation, and additional N for the evaluation of the kinetic 
energy), subject to additional technical details8. PauliNet is thus a 
candidate for a quantum chemistry method that can scale to much 
larger systems with high accuracy.
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automerization. a, Cyclobutadiene automerization. The transition state has 
a highly multireferential character. b, Convergence of the total energy of 
the energy minimum and transition state with training. Absolute energies 
of the energy minimum from HF at the complete basis set limit and from 
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barrier obtained by sampling the trained PauliNet wavefunctions, compared 
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Compared to standard functional forms used in QMC, the use of 
DNNs has several advantages. First, the much higher flexibility of 
DNNs allows a variational approach to reach or exceed the accuracy 
of DMC, which aids the calculation of accurate derived electronic 
properties beyond the electronic energy. Second, besides encoding 
more-complex many-body correlations between electrons, DNNs 
have an essentially unlimited flexibility in the spatial degrees of 
freedom, circumventing the curse of incomplete basis sets of quan-
tum chemistry, which can be removed only with DMC when using 
standard techniques. Third, the rapid oscillations of the local energy 
close to heavy nuclei in standard QMC mandate the use of pseudo-
potentials for heavier elements such as transition metals. The flex-
ibility of DNNs could sidestep this necessity by smoothing out such 
oscillations.

In classical quantum chemistry methods, strong correlation is 
usually treated by using large multideterminant expansions, which 
are computationally demanding and introduce the problem of 
selecting the proper subset of determinants. Treating strong corre-
lation on the level of Jastrow factors traditionally requires construc-
tion of specialized many-body forms37,38. By contrast, we show that 
DNNs are capable of learning strong correlation between electrons 
without any specialized adaptation. Convergence to high accuracy 
can be achieved with only a few determinants, changing the prob-
lem from searching or sampling over exponentially many determi-
nants to letting a DNN search over exponentially many functions. 
Although it is unclear whether this is advantageous in a strict 
mathematical sense, this is precisely the task that DNNs have been 
demonstrated to be strong at in a variety of real-world applications. 
Complementary approaches that use VMC in a second-quantized 
form of the electronic problem have also been proposed7. This class 
of methods has the advantage of eliminating much of the complexity 
of electronic wavefunctions (such as the antisymmetry or cusp con-
ditions) from the machine-learning part of the problem, but needs 
to cope with the ubiquitous limitations of single-particle basis sets.

Already a brief comparison of our approach with that of Pfau 
et al. hints at potential improvements of both architectures31. The 
combination of architectural design and optimization methods 
used in FermiNet with the built-in physical constraints of PauliNet 
appears to be a promising venue for computationally affordable, 
scalable, yet highly accurate black-box methods for quantum chem-
istry. We hope that the introduction of neural networks into the 
field of electronic QMC opens the possibility to utilize the striking 
advances in deep learning from the last decade in a new field.

Online content
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ing summaries, source data, extended data, supplementary infor-
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methods
Ansatz optimization. We optimize the PauliNet ansatz individually for each 
atomic system in an unsupervised fashion using the variational principle for the 
total electronic energy,

E0 ¼ min
ψ

E½ψ ≤ min
θ

E½ψθ ;

E½ψ  ¼
R
dr ψðrÞĤψðrÞ

ð6Þ

Following the standard QMC technique, the energy integral is evaluated as an 
expected value of the local energy, Eloc½ψ ðrÞ ¼ ĤψðrÞ=ψðrÞ

I
, over the probability 

distribution ∣ψ2(r)∣,

E½ψ  ¼ Erjψ j2 Eloc½ψ ðrÞ½  ð7Þ

We generate training data for PauliNet on the fly by periodically alternating 
training on one hand and sampling electron positions with a standard Langevin 
Monte Carlo approach on the other43. Each sampled electron configuration is 
used only once in an optimization run. We use a simplified version of the method 
by Umrigar et al.43, in which the radial step proposal is replaced with clipping the 
step length such that the step size is always shorter than the distance to the nearest 
nucleus, so the nucleus can never be ‘overshot’. The initial electron positions for the 
Markov chain are sampled from Gaussian distributions around the nuclei such that 
the effective atomic Mulliken charges obtained from the HF method are respected.

To optimize the parameters θ in the Jastrow and backflow neural networks, we 
use the weighted Adam optimizer44,45 together with the total energy used directly 
as the loss function. To calculate the stochastic gradient of the loss function over a 
batch of samples, we use a gradient formula that takes advantage of the fact that the 
Hamiltonian operator is Hermitian46,

LðθÞ ¼ Erjψ 02 j Eloc½ψθðrÞ½ 
∇θLðθÞ ¼ 2Erjψ 02 j Eloc½ψθðrÞ � LðθÞð Þ∇θ ln jψθ j½  ð8Þ

This expression for the gradient requires calculating only second derivatives  
of the wavefunction (for the Laplace operator), whereas direct differentiation 
would require third derivatives (derivative of the Laplace operator). We  
smoothly clip the local energy of each sample by a logarithmically growing  
clipping function outside the window defined as five times the mean deviance from 
the median local energy in a given batch. The learning rate is controlled by a cyclic 
scheduling policy47.

Cusp conditions. Equation (1) ensures the nuclear cusp conditions via the 
molecular orbitals φμ(ri). We achieve this by modifying the molecular orbitals 
using the technique from Ma et al.34 with one simplification—we optimize the 
orbital values at atomic nuclei, ri = RI, via the energy variational principle, rather 
then fitting them against references values. The electronic cusp conditions are 
enforced by γ(r),

γðrÞ :¼
X

i< j

� cij
1þ jri � rjj

; ð9Þ

where cij is either 
1
2 or 

1
4 depending on the spins of the two electrons. To preserve the 

cusp conditions built into φμ and γ, the Jastrow factor and backflow DNNs must be 
cuspless,

∇ri JðrÞjri¼frk ;RIg ¼ 0; ∇ri f μiðrÞ
���
ri¼frk ;RIg

¼ 0 ð10Þ

These conditions are ensured by constructing the DNNs appropriately, as detailed 
below.

PauliNet extension of SchNet. SchNet is an instance of the class of graph 
convolutional neural networks, and was designed to model the molecular energy as 
a function of just the nuclear charges and coordinates22. In PauliNet, we use SchNet 
to represent electrons in molecular environments by implementing the iteration 
rule in equation (4),

zðn;± Þi :¼
P±

j≠i w
ðn;± Þ
θ eðjri � rjjÞ

� 
 hðnÞθ xðnÞj

 

zðn;nÞi :¼ P
Iw

ðn;nÞ
θ eðjri � RI jÞð Þ  Yθ;I

xðnþ1Þ
i :¼ xðnÞi þ

P
± g

ðn;± Þ
θ zðn;± Þi

 
þ gðn;nÞθ zðn;nÞi

 
ð11Þ

where ‘⊙’ denotes element-wise multiplication; wðnÞ
θ
I

, hðnÞθ
I

 and gðnÞθ
I

 are trainable 
functions represented by ordinary fully connected DNNs; and e is a radial basis 
function that featurizes the interatomic distances. The modifications of the original 
SchNet are as follows.

 1. Since the wavefunction is a function of electron coordinates, the iterated 
feature vectors xðnÞi

I
 represent electrons, not atoms.

 2. The messages zi(n) received by the electron feature vectors at each iteration 
are split into three channels, corresponding to same-spin electrons (+), 

opposite-spin electrons (−) and the nuclei (n). This builds more flexibility 
into the architecture, and is motivated by the fact that electrons and nuclei are 
particles of an entirely different type.

 3. Each channel has a separate receiving function gθ, again increasing flexibility 
without substantially increasing the number of parameters.

 4. Each nucleus is represented by a trainable embedding Yθ,I, which is  
shared across all iterations and not iteratively updated. In VMC, the wave-
function is always optimized for a given fixed geometry of the nuclei,  
so the nuclear embeddings can be assumed to already represent each  
nucleus with its (fixed) atomic environment, hence the absence of need for 
their iterative refinement.

 5. The distance features e are constructed to be cuspless, as detailed below.
We use a distance featurization inspired by the PhysNet architecture48, with a 
modified envelope that forces all the Gaussian features and their derivatives 
to zero at zero distance,

ekðrÞ :¼ r2e�r�ðr�μkÞ2=σ2k

μk :¼ rcq2k; σk :¼ 1
7 ð1þ rcqkÞ

ð12Þ

where qk equidistantly spans the interval (0, 1) and rc is a cutoff parameter.

Computational details. All reported methods were implemented in Pytorch49. 
The linear coefficients of the HF orbitals φμ as well as of the determinants in a 
multideterminant expansion were calculated with PySCF50 using the 6-311G basis 
set. The plain fully connected DNNs that represent the trainable functions in our 
architecture were chosen such that the total number of trainable parameters is 
around 7 × 104 (see Extended Data Fig. 2).

Data availability
All raw data were generated with the accompanying code and are available in 
Figshare (https://doi.org/10.6084/m9.figshare.12720569.v2)51. Processed data used 
to generate figures are both included with the code and provided with this paper as 
source data.

Code availability
All computer code developed in this work is released either in the general 
DeepQMC package available on Zenodo (https://doi.org/10.5281/
zenodo.3960827)52 and developed on Github (https://github.com/deepqmc/
deepqmc), or in the project-specific repository (https://doi.org/10.6084/
m9.figshare.12720833.v1)53, both under the MIT license.
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Extended Data Fig. 1 | Variational correlation energy (%) of five test systems obtained with four types of trial wave functions.
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Extended Data Fig. 2 | Hyperparameters used in numerical calculations.
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