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I. INTRODUCTION

This year’s Nobel Prize in Physics focuses upon the
complexity of physical systems, from the largest scales
experienced by humans, such as Earth’s climate, down
to the microscopic structure and dynamics of mysterious
and yet commonplace materials, such as glass. We recog-
nize that scientists understand that no single prediction
of anything can be taken as unassailable truth, and that
without understanding the origins of variability we can-
not understand the behavior of any system. Only then,
for example, do we understand that global warming is
real and attributable to humans. In the following we be-
gin with a general background to provide a context for
the discussion of specific contributions. A central em-
phasis is on the physical reality that the variability in
the basic processes, from climate dynamics to frustrated
materials, leads to the emergence of multiple length and
time scales and hence is fundamental to interpretation of
theory, experiment and observation.

A. Instability and nonlinearity underlie multiscale
complexity and stochasticity

The emergence of disorder from order, and with it mul-
tiple scales in space and time, is a characteristic of com-
plex systems. Understanding the nature of that disorder
presents an enormous scientific challenge. Natural ques-
tions include: Does it grow and space and time without
bound? Does it choose a particular spatial structure or
many spatial structures? Does that choice involve all
of the degrees of freedom of a system or just a subset?
Which subset?

The questions themselves have the same multi-scale
structure as the phenomena they address.

A quintessential example is the transition of a lami-
nar flow to a turbulent flow [e.g., 8, 66, 104], but in this
and other nonlinear systems, characterizing the border
between order and disorder is amongst the most chal-
lenging problems in physics. Indeed, advances in under-
standing multiscale physics have been prominent in tur-
bulence theory and experiment [e.g., 10, 36, 64, 67, 88],
and the linkages between statistical physics and hydrody-
namic instability underlie the generality of the problem
[92].

Turbulent thermal convection, such as what happens
when we boil water, is an ideal setting for demonstrating
the role of a myriad of scales in controlling macroscopic
transport of heat and mass [23, 51]. This was on the
mind of Edward Lorenz when he built his “toy model” of
convection in the atmosphere [56], which is a Galerkin-
modal truncation of the equations for Rayleigh-Bénard
convection with stress-free boundary conditions on the

upper and lower boundaries [97]. The model is

dX

dt
= σ(Y −X),

dY

dt
= X(Ra− Z)− Y and

dZ

dt
= XY − βZ,

where X describes the intensity of convective motion, Y
is the temperature difference between ascending and de-
scending flow and Z is the deviation from linearity of the
vertical temperature profile. The control parameters are
the Prandtl Number, σ, which is a property of the fluid,
the Rayleigh Number, Ra, which is the dimensionless
buoyancy driving vertical fluid motions, and a constant
factor β, characterizing the domain geometry.

The Lorenz system acts as a rich toy model of low-
dimensional chaos. Since its origin the breadth and ex-
tension of studies has been so broad [e.g., 103] it would
be difficult to enumerate them all. Key here are the facts
that the solutions are bounded, (Fig. 1) and yet exhibit
sensitive dependence on initial conditions (Fig. 2).
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FIG. 1. Plot in (X,Y, Z) phase space of numerical simu-
lation of a circuit version of Lorenz system at (σ, β,Ra) =
(10, 8/3, 33.5), from Weady et al. (2018).

Poincaré is generally credited with launching the field
by discovering that the long-term behavior of the three-
body problem was infinitely more complex than had been
anticipated. In modern parlance he observed the tan-
gling of homoclinic orbits (which are trajectories of a dy-
namical system flow joining a saddle equilibrium point
to itself, residing at the intersection of the stable man-
ifold and the unstable manifold of an equilibrium) and
inferred the divergence of the perturbative solutions of
the equations of motion. He recognized that the solar
system could be viewed dynamically as a perturbation of
the integrable Kepler (Hamiltonian) problem.

The complimentary pictures of statistical mechanics
and hydrodynamics continue to inspire and challenge re-
searchers. From the perspective of the phase space of a
system, whereas in principle a complete description of the
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FIG. 2. Plot of X(t) of the Lorenz system with (σ, β,Ra) =
(10, 8/3, 24.9) in which the initial data for all three variables
are 10 (blue) or 10.01 (red). The divergence of the two solu-
tions with slightly different initial conditions begins at t = 5.5;
this is sensitive dependence on initial conditions, often whim-
sically referred to as the “Butterfly Effect”.

evolution of the probability density of a system may be
accessible via the Boltzmann, Fokker-Planck or Liouville
equations [27], such high dimensional partial differential
equations may be intransigent to useful analysis. In con-
trast, lower dimensional ordinary differential equations
may exhibit shockingly complex chaotic dynamics [e.g.,
35, 56, 103]. However, either formally [105] or in specific
physical systems, such as those governing atmospheric
dynamics [57], the effective dynamics may operate on
a lower dimensional slow manifold. In consequence, it
is reasonable to ask whether climate–the signal–is the
slow manifold of weather–the noise. Of course, such a
question is at the heart of the work being honored this
year and is being asked across a vast range of disequi-
librium systems where one replaces climate and weather
with other systems. A central aspect of such questions
is how one distinguishes between internal, external and
emergent phenomena.

B. Stochasticity and Disorder Imply Predictability

The relation between the signal and the noise in clas-
sical Brownian Motion assumes equipartition and hence
thermal equilibrium. However, in systems out of equilib-
rium, the situation can be dramatically different. Giorgio
Parisi [87] highlights the distinction between equilibrium
and non-equilibrium systems as follows:

“But the situation is different for systems
that are only slightly out of equilibrium. For
example, imagine a system that cannot reach
equilibrium because of high free-energy bar-
riers (that may be of energetic or of entropic
nature): this situation typically applies to
disordered systems, such as spin glasses and
structural glasses. Such a system will ap-
proach equilibrium slowly, by jumping from

one metastable state to another, and it could
remain slightly out of equilibrium forever if
continually perturbed with a slowly changing
external field. In such systems we can expect
a separation, by many orders of magnitude,
between the microscopic time scale of the sys-
tem (for example, that represented by the vi-
brations of individual atoms) and the macro-
scopic time needed to cross the barrier (for ex-
ample, changes in the structure of the system
itself). The system can then be considered to
be essentially thermalized inside a metastable
state, and so fluctuation-dissipation ideas can
still be applied: the slowly changing overall
state of the system is considered to be a small
perturbation.”

This basic manner of thinking, be it for spin glasses or
any other complex stochastic multiscale system, such as
climate, characterize much of the landscape of the work
being recognized this year. Indeed, it is essential to un-
derstand that noise and disorder influences all systems
and can entirely determine the fate of some nonlinear dy-
namical systems. Thus, the concept of predictability is
specious when one ignores the underlying causes of noise
induced variability.

II. CLIMATE PHYSICS: BACKGROUND AND
HISTORY

Since Fourier’s studies of the Earth’s energy budget,
shortwave solar radiation has been known as the central
input of energy into the climate system. The spectral
separation between this input, centered in the visible,
and the output, in the infrared, underlies the nature of
the habitability of any planet with an atmosphere that
absorbs in the infrared. The heating effect of the absorp-
tion of solar radiation by CO2 and other gases was mea-
sured by Eunice Foote, but in 1861 John Tyndall [109]
published a then technological tour-de-force of systematic
absorption and emission of infrared radiation by a wide
variety of gases, including water vapor and CO2 . This
provided the experimental foundation for future studies
of what we now call the “Greenhouse Effect”, and was
a key ingredient in the major advance made in 1896 by
Svante Arrhenius [6] (Nobel Laureate 1903), whose work
we discuss more below. The absorption and emission of
infrared radiation by Earth’s atmosphere is, apart from
any other physics operative in physical climatology, a
physically and computationally challenging area of broad
relevance in planetary physics [91]. The history of physi-
cal climate science is described through major waypoints
in the published literature collected by Archer & Pier-
rehumbert [4]. Indeed, the ease with which we can now
all run online radiative transfer models, which we show
next, might leave the likes of Tyndall shocked.

Figure 3 shows the results of the Moderate Resolution
Atmospheric Transmission (MODTRAN) model, which
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simulates the emission and absorption of infrared radia-
tion in the Earth’s atmosphere. When CO2 is added to
the atmosphere the infrared radiation escaping to space
is reduced in the spectral range shown in the middle
panel: A big “bite” appears at a wavenumber of about
650 cm−1, which is responsible for the reduction in out-
going radiative flux from the planet. Water vapor domi-
nates the spectral range up to about 500 cm−1 and then
again at large wavenumber. The smaller “bite” centered
at about 1050 cm−1 is due to Ozone. In order to re-
establish a steady state energy balance, the “wings” sur-
rounding it, which are dominated by water vapor, must
radiate at a higher temperature. In this example, the
surface temperature increases by 8.5 ◦C . Water vapor
dominates the spectral range up to about 500 cm−1 and
then again at large wavenumber. The smaller “bite” cen-
tered at about 1050 cm−1 is due to Ozone.

Spectra such as seen in Figure 3 inform our under-
standing that the most potent Greenhouse Gas (GHG)
in Earth’s atmosphere is water vapor, whose distribution
we cannot directly control. It is simply not possible to
“control” when, where and how much rain falls. Rather,
atmospheric water vapor is controlled by the complex hy-
drological cycle and basic thermodynamics demonstrates
that for every degree increase in temperature the atmo-
sphere can hold approximately 7% more water. This is
the basis of the so-called water vapor feedback. As the
planet warms, the amount of water vapor in the atmo-
sphere increases thereby increasing the temperature and
so forth. Understanding how that water vapor is dis-
tributed through the action of the hydrologic cycle is a
major challenge.

In principle we can control the Earth’s temperature
by controlling other GHG concentrations. The simple
question to ask is: Given an increase in atmospheric
CO2 what are the consequences for global physical clima-
tology? Like most clear questions in the physical sciences,
the path towards an answer is a punctuated process, in-
formed by both mistakes and successes. The “Keeling
Curve” in Fig. 4 shows the key observations during our
lifetimes. The curve is iconic both because of its analyti-
cal precision and its foreboding message; During the last
eight glacial cycles–about 800,000 years–the CO2 concen-
tration has not been higher than 300 ppm, with a max-
imum glacial-interglacial change of about 120 ppm and
temperature anomalies greater than 10 K [25]. How does
one model such a system that contains so many cogs and
wheels?

III. DEVELOPMENT OF MODEL
HIERARCHIES

A. Energy balance models

The input of solar energy acts as the largest annual
external periodic thermal forcing to the climate system.
For this reason, we now know that any mathematical the-
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FIG. 3. The vertical axis is the total upward infrared en-
ergy flux in Wm−2 and the horizontal axis is wavenumber in
cm−1. The smooth curves are theoretical emission spectra of
blackbodies at different temperatures. The jagged lines are
spectra of infrared light at the top of the atmosphere look-
ing down on Earth. The model demonstrates the effect of
wavelength-selective greenhouse gases on Earth’s outgoing IR
energy flux. Here we take an extreme version of increasing
atmospheric CO2 from 0 ppm (top panel) to 1000 ppm (bot-
tom two panels). In the top panel there is no CO2 in the
atmosphere and the outgoing steady state flux is 249 Wm−2.
In the middle panel, 1000 ppm CO2 is distributed through
the atmosphere and the absorption “bite” (highlighted by the
downward pointing black arrow) reduces the instantaneous
flux escaping from the top of the atmosphere to 223 Wm−2.
In the lowest panel, in order to re-establish steady state with
249 Wm−2, the “wings” surrounding it (dominated by water
vapor and highlighted with the upward black arrows) must
radiate at a higher temperature, in consequence of which the
surface temperature increases by 8.5 ◦C . Online models are
available at http://climatemodels.uchicago.edu.
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FIG. 4. The Keeling Curve, named after the late Charles
Keeling who began the monitoring program. The curve
shows monthly mean CO2 concentration from Mauna Loa,
1958-2021. (Data from Scripps Institution of Oceanography;
https://keelingcurve.ucsd.edu.)

ory of climate must rely on the challenging edifice of ex-
plicitly time dependent differential equations to capture
the time-evolution of climate subsystems on many time-
scales. On the other hand numerical modeling, which
marches forward the coupled equations of the entire sys-
tem in the modality of weather forecasting, can incor-
porate time dependent forcing in a variety of ways. It
is self-evident that the atmosphere, ocean, cryosphere,
land masses and biosphere must obey the laws of ther-
modynamics. However, the myriad of time scales in the
globally coupled system make determination of which
subsystems are in what balance on a given time scale
a challenging theoretical exercise.

The canonical class of energy balance models, now re-
ferred to as “Budyko-Sellers models” [15, 28, 78, 101],
pits the incoming shortwave and outgoing longwave ra-
diative fluxes against each other. In a mean annual, glob-
ally averaged sense we can write

CP
∂T

∂t
= S0(1− α)− εσT 4, (1)

where T is the temperature of the surface, CP is its ef-
fective heat capacity, S0 and α are the solar shortwave
radiative flux and surface albedo respectively, σ is the
Stefan-Boltzmann constant and ε the emissivity. The
fixed point for this simple model is

εσT 4
BP = S0(1− α)⇐⇒ FG

↑ = F�
↓, (2)

or that the incoming solar flux (F�
↓) is balanced by the

upward surface flux (FG
↑), which gives us the steady

state temperature TBP = 4
√
S0(1− α)/εσ. The at-

mosphere only enters into this result through the use
of the planetary albedo α, which is approximately 0.3
as determined from satellites, thereby including both
highly reflective clouds (up to 0.9) and absorbing oceans
(0.2). Hence, TBP does not include the infrared contri-
bution of the atmosphere and hence does not deal with

the greenhouse effect. In consequence, this is often re-
ferred to as a “bare planet” temperature and it is cold;
TBP ≈ −15◦C [5, 91].

Now, the simplest means to see the infrared effects
of the atmosphere is shown in Figure 5. In steady
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FIG. 5. Approximately as envisioned by Svante Arrhenius in
1896 [6], a “one-layer atmosphere” over Earth that absorbs
and emits the outgoing infrared radiation from the surface
FG
↑. We assume the outgoing atmospheric infrared emis-

sion is the same as the incoming, and that the atmosphere is
isothermal, so that FA

↓ = FA
↑ ≡ FA. Modified from [5].

state, balancing the fluxes in the atmospheric layer we
have FG = 2FA, and using this at the surface we find
F�
↓ = FA at the top of the atmosphere. The two key

consequences are (a) the top of the atmosphere radiates
to space at the (cold) bare planet temperature TA = TBP ,
and hence (b) the surface temperature is now a balmy
TG = 21/4TBP ≈ 34◦C .

Generalizing this to an N -layer atmosphere one finds
that TG = (1+N)1/4TBP with the top of the atmosphere
radiating to space at TBP , with the clear implication of
a runaway greenhouse effect that ignores the subtleties
of the spectral absorption of greenhouse gases, feedbacks
and many other effects. These leading order processes
were understood by the polymath Svante Arrhenius. In
1896 [6], in a pioneering study of how absorption by
CO2 would influence TG, he built the scientific frame-
work central to the atmospheric column models used in
successively more complex treatments that have devel-
oped since then.

The effect now known as band-saturation was also un-
derstood by Arrhenius, who was using the then avail-
able state of the art spectroscopic data on CO2 and wa-
ter vapor, and in particular that from the experiments
of Tyndall [109]. In band-saturation the absorption in-
creases linearly with temperature at low gas concentra-
tions (or pressures) but with increasing concentration all
infrared radiation entering a gas is absorbed. Not only
did Arrhenius determine that the atmosphere is not sat-
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urated, present spectroscopic measurements also show
that CO2 is far from being saturated [91]. Moreover,
we now understand that because of the vertical structure
of both the gas concentration and the temperature, even
were the atmosphere saturated, TG can still rise because
the radiation escapes to space from the thin diffuse upper
layers that are not saturated. Finally, Knut Ångstrom
argued that increasing CO2 would have little radiative
impact because water vapor absorbs the infrared radi-
ation that CO2 would absorb were its concentration to
increase. Whereas this effect is operative in the lower–
very high humidity–tropical atmosphere, CO2 influences
the part of the infrared spectrum associated with the
cold upper layers of the atmosphere radiating to space.
In consequence, Ångstrom’s argument was superfluous
[4, 91].

Arrhenius’ prediction, now referred to as “climate-
sensitivity”, was to estimate the change in TG upon a
doubling of the atmospheric CO2 . Modern estimates
have the range of 2.5-4◦C and Arrhenius predicted ap-
proximately 6◦C , which was limited by the accuracy of
the absorption spectra and his treatment of the atmo-
sphere roughly as shown in Figure 5. With the advent
of modern spectra, this latter approximation underesti-
mates the climate sensitivity because the effect described
in the previous paragraph, wherein CO2 influences the
range of the infrared spectrum associated with the cold
upper layers of the atmosphere radiating to space cannot
be incorporated. This underestimate was offset by the
spectra he used.

Arrhenius also incorporated/highlighted other key
components of modern physical climatology. In particu-
lar, the equator to pole energy imbalance, and the ice-
albedo feedback. The latter effect, wherein a latitudi-
nally dependent albedo in Eq. 1 underlies the two basic
states of the climate system–cold and warm–is of cen-
tral contemporary popular and technical interest with
the rapidly evolving ice pack in the Arctic. Indeed, he
made excellent predictions of the CO2 concentration dur-
ing an ice age of 150 ppm, which we know from ice core
research [25] was 180-200 ppm, as well as making esti-
mates of how human coal consumption would lead to a
doubling of atmospheric CO2 . All of this was done in
a single paper in which he provided the conceptual scaf-
folding of contemporary atmospheric column models used
in various incarnations today. In that sense, the central
influences of anthropogenic greenhouse gas forcing on cli-
mate have been understood for a century and a quarter
and Arrhenius’ work is truly prescient as a shear intel-
lectual tour-de-force, laying out the basic ingredients for
analysis in the present day. See the discussion in [4].

B. Generalized Deterministic Energy Balance
Models (EBMs)

As introduced above in §III A, the simplest models
treat global averages and focus principally on the ra-

diative transfer properties of the atmosphere. These are
generalized to mean annual, zonally averaged (i.e., across
latitudinal bands) quantities, whilst allowing for a latitu-
dinal dependence of TG and α and meridional (longitu-
dinal) heat transport. Such a framework admits a time-
evolving planetary ice-line and hence a spatial ice-albedo
feedback; if a perturbation slightly expands the ice cover,
less energy is absorbed by the system, it cools further by
Eq. 1, the ice expands further driving the cooling feed-
back. Indeed, such theories predict an abrupt transition
to a completely ice-covered, or “snowball” Earth when
the solar flux S0 is lowered by just a few percent. One
such approach can be solved analytically [79] to find three
fixed points; the snowball and the interglacial (present)
states are both stable states, whereas that with approxi-
mately two-thirds ice cover is unstable. The approaches
within this class of theories can be solved using spectral
methods akin to those used in numerical simulations of
the Navier-Stokes equations [77].

Although clear observational evidence of ice ages has
long been known [2], the multiple global climate states
predicted by a range of EBMs were results that were
viewed as unrealistic theoretical predictions. However,
contemporaneous interest in “nuclear winter,” wherein
weapon suspended dust blocks incident solar radiation,
constituted another interest in their predictions. Only in
the last few decades has evidence been found for a global
glaciation about 700 million years ago [54, 100] in the
Neoproterozoic, highlighting the role of EBMs [15, 101]
as quantitative tools.

Importantly, such theories capture the possible multi-
ple states of the climate system and contain mathemati-
cally interesting and generalizable features that connect
them to a broad class of multi-state systems appearing
across many problems in physics, as described in §III D.
In this sense, climate science stimulates research in other
areas of physics.

C. The Emergence of Numerical Climate Models

1. Prelude

All models are approximations to reality. All approx-
imations, be they mathematical or the numerical imple-
mentation of formulae, break down in particular limits.
The art in science is to make rational approximations.
The rigor is associated with knowing with high preci-
sion the circumstances of the break down. Since the
ready availability of large-scale computation, the term
“model” in climate science nearly uniformly appears to
be synonymous with Global Climate Models (GCMs)
rather then EBMs. Contemporary GCMs operate in the
same manner as did the original incarnations – by nu-
merically solving the conservation of mass, momentum
and energy throughout the atmosphere/ocean/ice sys-
tem with parameterizations representing sub-grid scale
physics (e.g., [38]). Some contemporary approaches to
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improve GCMs use data assimilation [94] and test and
implement high-resolution schemes [52]. Due to the com-
plex nature of climate (particularly fluid) systems, GCMs
are amongst the most sophisticated numerical models
developed. Nonetheless, despite the enormous progress
made in the development of GCMs, completely resolving
the spatiotemporal processes in the climate system re-
mains a challenge, particularly in the high latitudes [1].
Furthermore, because of the complex structure and high
dimensional data produced by GCMs, it is not straight-
forward to extract the dominant physical processes on
multiple time scales with the aim of interpreting their
mutual interactions. Thus, GCMs operate like enormous
coarse-grained weather forecasts; the global climate is
represented by the output from a computational approx-
imation of all of the known physics and, most impor-
tantly, parameterization of sub-grid-scale processes and
often ad-hoc closure schemes connect different subsys-
tems. Recent advances in climate models systematically
embrace the concepts spearheaded by Klaus Hasselmann
[42] that the chaotic dynamics in the weather underlie
the variability on longer time scales and ultimately must
be treated in models [e.g., 11, 20, 29, 59, 80, 81].

2. Origins

The difference between the incoming solar energy and
the outgoing infrared energy is a function of latitude with
a substantial excess of 5 PW between 40 0N and 40 0S.
That energy is transported to the high latitudes by the
motion of the atmosphere and the ocean and hence the
quantitative fate and distribution of that heat focuses at-
tention on the basic mechanisms of fluid flow and mixing
in a rotating system. The atmosphere carries about 2/3
of the 5 PW and the remainder is transported by the
ocean, but on different time scales and constrained by
geography. Thus, the reality of theories and models is
constrained by the treatment of these issues, as well as
the cryosphere, due to the ice-albedo feedback.

During the 1950’s large scale numerical weather fore-
casting originated at the Institute for Advanced Study in
Princeton in a project led by Jule Charney and John von
Neumann [19]. This naturally evolved roughly in par-
allel with the theoretical and experimental study of the
detailed processes of atmospheric and oceanic dynamics
generally referred to as geophysical fluid dynamics–GFD
[114, 115]. Although over time a cultural difference be-
tween GFD, weather forecasting and climate modeling
has lead to different communities they clearly share many
similar goals if not approaches.

Many pioneers were recruited and/or visited for long
stays and these people, including Bert Bolin, brought in-
ternational expertise to the project [112]. Key here is
the involvement of Joseph Smagorinsky, head of the U.S.
Weather Bureau’s General Circulation Research Labo-
ratory, which later moved to Princeton to become the
Geophysical Fluid Dynamics Laboratory, who recruited

Syukuro Manabe in 1959 and Kirk Bryan in 1961. The
laboratory soon had a large staff of programmers.

Working independently, by 1960 Cecil E. Leith devel-
oped, coded and was running what could be considered as
the first comprehensive atmosphere-only GCM (AGCM),
the history is described in detail in a recent article [39].
The model had a domain up into the lower stratosphere
and a representation of the hydrological cycle and clouds.
Leith produced animations of the runs and hence also
stood at the forefront of computer visualization.

3. Key Results

The numerical models being recognized [61–63] were
built upon solid physics and can be considered as the first
realizations of the dream of Arrhenius. Important earlier
studies [60, 75] focused attention on how to incorporate
known dynamical and radiative processes into a column
model [62].

Manabe and Wetherald [62] treated the entire atmo-
sphere as a single one-dimensional column with a given
profile of relative humidity and greenhouse gas concen-
tration. It evolves from an initial state (a) via radiative
transfer, which is calculated given the spectra of green-
house gases, the most important being water vapor, and
(b) by convective adjustment. This process constitutes a
parameterization of the vertical dynamics as follows. If
a column evolves solely from radiative transfer, the lapse
rate is ∼ - 15 ◦C /km, far greater than observed. Now,
the adiabatic lapse rate is ∼ - 10 ◦C /km, but as air rises
in a real atmosphere the condensation of water releases
latent heat, which is largely responsible for the observed,
or “moist”, lapse rate of ∼ - 6 ◦C /km. To model this
phenomena, whereby surface heating drives vertical mo-
tion, phase change and the concomitant release of heat, as
soon as the temperature profile deviates from the moist
lapse rate it is adjusted back to it. This is the convective
adjustment scheme of Manabe and Strickler [61].

Manabe and Wetherald [62] noted that observations
show rather little seasonal variation in the climatologi-
cal latitudinal relative humidity profiles in the northern
hemisphere, whereas the absolute humidity (saturation
vapor pressure) will depend sensitively on temperature.
Thus, Manabe and Wetherald [62] repeat the calculations
of Manabe and Strickler [61] with the key difference be-
tween the two being that the later (earlier) paper used the
given distribution of relative (absolute) humidity, which
appropriately captures the “water vapor feedback” dis-
cussed above. As described in the arguments surround-
ing Figure 5, the upper layer of the atmosphere radi-
ates to space at a low temperature and to get the energy
balance there quantitatively correct, the relative humid-
ity (embodying the most important greenhouse gas), the
concentration of other greenhouse gases and the temper-
ature must be captured. This confluence of effects led to
the key result of Manabe and Wetherald [62], which is
their calculation of climate sensitivity of 2.3 ◦C warming
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per doubling of atmospheric CO2 .

By 1975 Manabe and Wetherald [63] had substantially
advanced their 1967 column treatment by solving the
full equations for heat, mass, momentum and radiation
around the globe–their first GCM–using a computer with
about 0.5 MB of RAM. When they doubled CO2 from 300
to 600 ppm the globally averaged surface temperature in-
creased by 2.93 ◦C . The model assumes no transport of
heat by the ocean, idealized topography and a fixed dis-
tribution of clouds amongst others.

As described in §III A, Arrhenius introduced the con-
cept of climate sensitivity, which is still used today. How-
ever, one needs to distinguish the difference between the
Arrhenius concept, or the equilibrium climate sensitivity
(ECS), from the transient climate sensitivity (TCS). In
ECS one envisions an instantaneous doubling of CO2 and
then calculates the new steady state energy balance with
little veracity ascribed to the time it takes to reach that
steady state. An extreme version of increasing atmo-
spheric CO2 from 0 ppm to 1000 ppm is shown in Fig-
ure 3, in which the Moderate Resolution Atmospheric
Transmission (MODTRAN) model is used demonstrate
the idea of the ECS. MODTRAN simulates the emission
and absorption of infrared radiation in the atmosphere
in the same manner as Manabe and Wetherald [62] but
with modern spectral data and methods. When CO2 is
added to the atmosphere the infrared radiation escap-
ing to space is reduced in the spectral range shown in
the middle panel, but in order to re-establish a steady
state, the “wings” surrounding it (dominated by water
vapor) must radiate at a higher temperature, in conse-
quence of which the surface temperature increases by 8.5
◦C . This calculation rebalances the column energy in
the same general sense as did Manabe and Wetherald
[62, 63], and asks for the new surface temperature that
achieves this.

Contemporary GCMs produce a climate sensitivity
range of 2.5-4◦C and the two rather different Manabe and
Wetherald [62, 63] models produce a range 2.3-2.93◦C .
As described in §III A, we know why the Arrhenius re-
sult for ECS of approximately 6◦C is an upper bound
(accuracy of absorption spectra and an isothermal atmo-
sphere) but the robustness of the Manabe and Wetherald
[62, 63] results is remarkable, suggesting further that in-
creasing model complexity may not increase fidelity of
prediction. In reality the greenhouse gas profile is evolv-
ing over time, and hence so too is the response of the
climate, which is what underlies TCS. Thus, humanity
is really influenced by transient climate sensitivity. Both
ECS and TCS are model dependent and it was Klaus
Hasselmann who suggested a scheme for systematically
assessing how models compare to evolving observations
and what underlies variability in both.

D. Stochastic Theories

Planetary climate reflects a myriad of interactions op-
erating over a wide range of space and time scales.
The spatially inhomogeneous distribution of shortwave
radiative flux drives the atmosphere and ocean fluid-
dynamically, leading to long-ranged communication
through fluid advection and wave propagation [e.g., 31].
Whilst the GCMs described above attempt to capture
these processes, computing a sufficient number of real-
izations to quantify variability is a perennial challenge.
Therefore, a great deal of interest in how to quantify vari-
ability in a true statistical–central limit theorem–sense
emerged in both observational and theoretical studies at
the same time that the deterministic models of Manabe
and his many collaborators were focusing on building
GCMs.

To provide context, consider a global Budyko-Sellers
EBM, such as shown in Eq. 1, and assume that the
actual surface temperature T is not far from the aver-
age surface temperature TS , such that T = TS + x with
|x| � |TS | [e.g., 73]. The high-frequency fluctuations,
such as those associated with weather, are represented
as white noise, η(t), with constant amplitude σ̄, so that
the time-evolution of x is represented by what is called an
overdamped Ornstein-Uhlenbeck process, or generalized
Langevin equation;

dx

dt
= −λx+ σ̄η(t), (3)

with

λ =
4σ̄T 3

S − S0| ∂α∂T |
CP

, (4)

where λ represents the overall deterministic stability of
the climate relative to the equilibrium temperature of
TS . The albedo sensitivity, ∂α/∂T , is negative, thereby
exhibiting positive feedback, whereas the sensitivity of
the outgoing longwave radiative flux is positive, thereby
stabilizing deviations from TS .

Analysis of observations of the spectral properties of
pressure fields [76] in the context of signal processing
motivated Mitchell [71] to posit an autonomous Langevin
equation description of the ocean climate. At the same
time Klaus Hasselmann was creatively using fundamen-
tal physics concepts to quantify the surface ocean wave
spectra [40, 41], thereby building a deep appreciation for
the nature of fluctuations on the sea-surface. Building
on the intuition garnered from this research, basic con-
cepts in turbulence and Lorenz’s chaotic weather (c.f.,
§I A), he derived a generalizable stochastic description of
ocean climate in which the “noise” is associated with the
“weather” as described above [42]. His work has provided
both the motivation and the observational structure for
climate scientists to address variability.
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1. Outline of the Hasselmann [42] Stochastic Framework

Here we provide an interpretive and notationally un-
cluttered outline of the Hasselmann approach. Consider
the climate system of interest to be described by a cou-
pled set of governing equations represented by the vectors
x = (x1, . . . , xi) and y = (y1, . . . , yj), captured by two
sets of functions fi and gj as

ẋi = fi(x, y) and ẏj = gj(x, y), (5)

in which the characteristic time scales of evolution of all
the xi are much shorter than those of all of the yi, where
the latter treat the evolution of a “slowly” evolving large
scale climate observables. With no loss of generality we
further simplify the situation and treat x and y as scalar
variables, allowing us to write the effective dynamics for y
in terms of the fast variable as x = 〈x|y〉+x∗, where 〈x|y〉
is the conditional average; the average of x conditioned
on the state of y. Because x varies more rapidly than
does y, we use the conditional dynamics in that for y as

g(x, y) ≡ g (〈x|y〉+ x∗, y) ≈ g(〈x|y〉, y) + ∂xg(〈x|y〉, y)x∗

≡ −dU(y)

dy
+ σ̄(y)ξ(t),

where we have assumed that the rapid variations in the
fast variable, x∗(t), can be approximated as white noise
with 〈ξ(t)ξ (t′)〉 = δ (t− t′), an amplitude that depends
on the state of the slow variable, σ(y), and the determin-
istic dynamics that is interpreted as a drift force of the
potential U(y). Finally, when the intensity of the noise
is small, the system will spend a long period of time near
a fixed point, say yE , around which the drift force can be
expanded and the noise amplitude is ostensibly constant.
Then the dynamics of the climate variable y(t) is reduced
to an Ornstein-Uhlenbeck process of the form of Eq. 3,
viz.,

dy

dt
= −Λy + σ̄ξ(t). (6)

This treatment in terms of Brownian motion concepts al-
lows for the study of climate variables in the framework
of stochastic differential equations. For example, in ad-
dition to studying the state of the system via Eq. 6, one
can study the probability of the system being in a given
state at a given time, because to every Langevin equation
there exists a Fokker-Planck equation [e.g., 22]: This is a
framework particularly useful in interpretation of clima-
tological observations. Moreover, the solution to Eq. 6
gives the auto-correlation function, R(τ) = 〈y(t)y(t+τ)〉,
the Fourier transform of which is the power spectrum,

P (ω) = σ̄2/
(
Λ2 + ω2

)
,

showing (a) the red noise response of the white noise
process in Eq. 6 and (b) the most basic form of the
fluctuation-dissipation theorem, tying the noise intensity

to that of the variance of the process itself, viz.,
〈
y2
〉

=

σ̄2/(2Λ).
It is important to emphasize that, unlike Mitchell, Has-

selmann did not invoke Eq.(6) directly as an observation-
ally motivated ansatz. Rather, he begins with Eqs.(5),
which are better suited as a framework for stochastic pa-
rameterizations in climate models [e.g., 11, 20, 29, 59, 80,
81]. Importantly, there are of course an enormous range
of time scales in the dynamical system that is climate and
the existence of clear separations are at the heart of mod-
ern understanding of climate variability [e.g., 29]. Cen-
tral to Hasselmann’s approach is the deterministic aver-
aging described above, giving a coupled slow-fast deter-
ministic system controlled by a multiplicative noise cor-
rection to the averaged forcing. As described by Culina
et al. [20], this aspect has only recently been rigorously
justified, but under more restrictive conditions than pro-
posed by Hasselmann.

As shown in Fig. 6, while the spectrum grows as the fre-
quency decreases, we expect eventual saturation because
of the finite dissipation Λ. However, it has been shown
by Hasselmann, Wunsch [e.g., see 113, and refs therein]
and others that the ocean has an impressively long mem-
ory of events that can be hundreds to thousands of years
old. Moreover, on the decadal time scales of relevance
to humans, evidence is consistent with the memory be-
ing effectively infinite. Hence, this suggests a potential
self-similarity or fractal character, in which multiple time
scales provide different classes (e.g., brown, white, red,
pink) of stochastic processes [72]. Therefore, the basic
observation that a data record can be nonstationary, have
a growing variance and a difficult to measure mean, are
amongst the basic tenets of climate variability emerging
from Hasselmann’s work on the analogy with Brownian
motion.296 C. FRANKIGNOUL AND K. HASSELMA” 

cernible. The computed SST spectra also showed a 
corresponding flattening at low frequencies, as 
expected. 

Our simulation experiments may be compared 
with the work of Salmon Br Hendershott (1976), 
who simulated one year of air-sea interaction 
processes by coupling a two-layer, thermally 
variable atmospheric model to a “copper plate” 
oceanic mixed layer. With this more realistic 
model, which simulated the observed northern 
hemisphere seasonal cycle in fair detail, they found 
a frequency spectrum of SST anomaly very similar 
to the spectrum represented in Fig. 4. This supports 
the premise that the principal features of the SST 
variability are independent of the details of the 
coupling and can be inferred from the general 
concept of a white forcing spectrum and a linear 
auto-regressive integrator response, with a large 
time-constant separation between input and 
response. 

For comparison, Fig. 3 also shows the charac- 
teristic “explosive” behaviour of the processes with 
linear positive feedback, 1 < 0. Because of the short 
time scales involved, this case can be ruled out for 
SST anomalies, but it has been suggested that it 
may be relevant for more inert components of the 
climatic system, such as the ice sheets. It should be 
noted that a positive linear feedback does not 
necessarily imply overall climate instability, as non- 
linear terms can stabilize the response at  larger 
amplitudes. 

4. Cornparkon with observations 

The principal features of the stochastic two-scale 
model of SST variability are that the frequency 
spectra of SST anomalies obey an inverse square 
law for frequencies in the range r,’ < o < r i 1 ,  
flattening to a constant level at lower frequencies, 
and that the atmospheric input spectra are white 
throughout this frequency range. Examples of data 
exhibiting these features are given in Figs. 5 and 6. 

Fig. 5 shows the spectra of SST anomaly at the 
Atlantic Ocean weather ship India (59ON, 19O W), 
and Fig. 6 shows the spectra of latent and sensible 
heat flux at the same location (after Frost, 1975). 
The seasonal signal has been subtracted from the 
SST time series, but not from the latent and 
sensible heat flux series. Approximately 16 years of 

( Ilmonth) 

Fig. 5 .  Spectrum of SST anomaly at Ocean Weather 
Ship India for the period 1949-1964 (after Frost, 1975). 
The arrows indicate the 95% confidence interval. The 
smooth curve was calculated from relation (4.1) with h = 
100 m, L = (4.5 month)-’. 

LATENT 
HEAT 

FLUX 

SENSIBLE 

HEAT 

FLUX 

Fig. 6 .  Spectra of latent and sensible heat flu at Ocean 
Weather Ship India for the period 1949-1964 (after 
Frost, 1975). 

data were available, and the SST anomaly 
spectrum was computed from 14-day average data, 
yielding a Nyqvist frequency of about 1 cycle per 
month. Daily averages of the fluxes were computed 
from the flux time series obtained from the three 
hourly wind and temperature data using the bulk 
formulae, thereby avoiding the usual dficulties of 
estimating fluxes from climatologically averaged 
wind and temperature fields. 

Tellus 29 (1977), 4 

FIG. 6. The first application of the Hasselmann stochastic
model [42] for climate variability to climate data [26]. The
spectrum of the Sea Surface Temperature (SST) in the period
1949-1964 in the North Atlantic. The 95% confidence interval
is given by the double headed arrow and Λ−1 = 4.5 months.

Clearly this approach can, and has been, generalized
and taken into many directions in this and many other
fields. However, the theoretical framework in which one
might fruitfully treat climate data, and hence climate
predictability and variability, as a stochastic process is
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traced to Mitchell [71] and Hasselmann [42] the latter
of whom convincingly applied it to data with Frankig-
noul, as seen in Fig. 6. As is the case with most good
ideas, they have as many approximations and limitations
as they have new approaches and ideas that are born
from them. In particular, as noted above, identifying a
distinct spectral gap in observations, which would justify
the assumption of time scale separation, depends on the
data used. Nonetheless, because of Hasselmann’s theory,
the typical null hypothesis for climate variability is a red
power spectrum [65, 113].

IV. USING OBSERVATIONS TO TEST MODELS

From the perspective of laboratory science, using ex-
perimental measurements to test theory is such a self-
evident step in the scientific method that it goes without
saying. However physical cosmology and physical clima-
tology are observational sciences – practitioners observe
that which nature allows.

Decades before the satellite era, understanding atmo-
spheric and oceanic dynamics relied on sparse observa-
tions. For example, much of the theoretical and obser-
vational focus before the International Geophysical Year
(1957-58), when large scale systematic observational pro-
grams were launched, was centered around regions, such
as the poles [58, 110], or the behavior of currents, such
as the Gulf Stream, and the general oceanic and atmo-
spheric circulation, motivated by the theories of Jacob
Bjerknes, George Carrier, Walter Munk, Carl Rossby and
Henry Stommel. These problems pushed the boundaries
of mathematical and numerical modeling. Indeed, partly
in consequence of the lack of observational data, that the
numerical forecasting group at the Institute for Advanced
Study discussed in §III C was formed.

As the 1922 Nobel Laureate Niels Bohr is famously
quoted as saying, “Prediction is very difficult, especially
if it’s about the future!”. Our principal tools for under-
standing the future of climate are the GCMs pioneered
by Syukuro Manabe and his colleagues. One predicts, or
“projects” in the parlance of the field, and waits to see
what happens. Certainly, the future will always await
our arrival, but the idea of Klaus Hasselmann was to use
models and observations to ask what circumstances lead
the climate to its present state? Natural variability or the
increase in GHG concentrations due to human activity?

A. Fingerprinting

In order to assess whether climate models are faithfully
reproducing the signal from the natural variability, Has-
selmann’s interest in stochastic climate dynamics lead
naturally to his creation of a framework to systemati-
cally compare climate models and observations. This was
accomplished in three papers from 1979–1997 [43–45].

In his first paper in this series [43] Hasselmann notes
that despite the conceptual analogies with data from sin-
gle gridpoints, it is a challenge to deal with the vector
field structure of the climate signal. Namely, in refer-
ence to the approach from single gridpoints, “...the ques-
tion whether or not the response pattern, as a whole
or in part, is statistically significant, clearly cannot be
resolved by such an approach.”, and his work provides
the framework from purely spatial data [43] to spatio-
temporal data [44, 45]. Importantly, he shows how op-
timal detection techniques reveal understanding of the
nature of the natural variability in the climate system
or the “noise”. Namely, detection of a signal may not
necessarily be associated with parts of the data where
that signal is strongest, but rather where the noise is
the weakest, thereby revealing a more nuanced physical
interpretation of components of the system.

Fingerprinting methods identify climate change based
on the physics governing the system through the use of
climate model runs. The so-called “optimal fingerprint-
ing” method is a spatio-temporal generalization of mul-
tivariate regression adapted to the detection of climate
change and the attribution of change to externally forced
climate signals [48]. Spatio-temporal fingerprints, such as
the time varying three-dimensional changes in GHG con-
centrations, provide a means of discrimination between
observed changes and natural variability. Through the
years of refinement [45–49], the procedure is far more rig-
orous, nuanced and comprehensive than is comparison of
model simulations with observations alone.

One begins with a filtered version of the observed
record, given by the vector y, and the regression takes a
standard form y = Xa + u where the matrix X contains
the estimated response patterns to the external forcings,
or signals, that are of interest, a is a vector of scaling fac-
tors that adjusts the amplitudes of those patterns and u
represents internal climate variability, typically assumed
to be a Gaussian random vector with covariance ma-
trix C. The vector a is estimated in terms of C, X
and y with a variety of statistical techniques, where X
contains signals estimated with one or another models,
either a GCM or EBM, to create “internal variability”
with a complex spatio-temporal structure. For an ob-
served response to be attributed to anthropogenic forc-
ing, X must contain separate natural and anthropogenic
responses and hence a must account for possible errors
in forcing amplitude tuned to match the model to the
observations. In this manner, detection and attribution
are determined through a combination of physical rea-
soning and evaluation of specific hypotheses concerning
the scaling factors within in a. Importantly, the results
rely on estimation of the exact fingerprint amplitudes
from observations, and are independent of whether or
not the climate models used correctly simulate the fin-
gerprint amplitudes [e.g., 48, 49].

In a recent article, “Celebrating the anniversary of
three key events in climate change science”, Santer and
colleagues [98] reflect upon the progress during the four
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decades since the 1979 “Charney Report” [19], which was
the same year as Hasselmann’s first paper on how models
and observations can be self-consistently compared [43].
There are four sections to the paper [98], the first being
a summary of the Charney Report and the second ti-
tled “Hasselmann’s optimal detection paper” [43], which
the authors refer to as ‘the first serious effort to provide
a sound statistical framework for identifying a human-
caused warming signal.’. This approach was a departure
from previous work in univariate statistics:

Instead of looking for a needle in a tiny cor-
ner of a large haystack (and then proceed-
ing to search the next tiny corner), Hassel-
mann advocated for a more efficient strat-
egy - searching the entire haystack simulta-
neously...He also pointed out that theory, ob-
servations and models provide considerable
information about signal and noise proper-
ties...These unique signal characteristics (or
‘fingerprints’) can be used to distinguish cli-
mate signals from climate noise.

From the Charney report, which relied on ba-
sic theory and early climate model simula-
tions, there was clear recognition that fossil
fuel burning would yield an appreciable global
warming signal [19]. Klaus Hasselmann’s pa-
per [43] outlined a rational approach for de-
tecting this signal. Satellite-borne microwave
sounders began to monitor atmospheric tem-
perature, providing global patterns of multi-
decadal climate change and natural internal
variability information required for successful
application of Hasselmann’s signal detection
method.

Hasselmann’s paper was a statistical
roadmap for hundreds of subsequent climate
change detection and attribution (D&A)
studies...[and]...provided strong scientific
support for the conclusion reached by the
IPCC in 2013: “It is extremely likely that
human influence has been the dominant
cause of the observed warming since the
mid-20th century”

V. THE VASTNESS OF THE LANDSCAPE OF
DISORDER

A. Replicas, Spin Glasses and Frustration.

The term “spin glass” was coined in the early 1970’s
to describe disordered magnetic systems that appeared
to have a phase transition to a state in which each mag-
netic atom was stably aligned, but with the essential
proviso that the alignment direction varies randomly be-
tween atoms. Imagine a triangle with magnets placed
on the three corners. The magnets can have either their

north poles up or down. Under intuitive circumstances,
say upon placing the triangle in an external field point-
ing up or down perpendicular to its plane, one might
imagine all three either up or down. Now we impose
an “antiferromagnetic” constraint that any adjacent pair
must have the opposite orientation. When two magnets
satisfy the constraint, two others do not and no amount
of flipping orientations will satisfy the constraint – the
system is “frustrated”. This extremely idealized setting
is one of the simplest means to see how spin glasses and
other systems are frustrated.

Many frustrated systems are frustrated in their own
ways and there are many from which to choose, includ-
ing “structural” or “ordinary” glasses and “marginal” or
“Gardner” glasses. This is not the forum to discuss the
vast range of glassy systems, but a common feature in
such systems is that when they are rapidly quenched they
are unable to access equilibrium, and persist in occupying
a plethora of very long-lived metastable states. Whence,
a given experimental system typically has a unique mea-
surement, numerical and/or conceptual protocol. That
system specificity has remained a central challenge in the
field from its inception [e.g., 12, 68, 96]. Philip Anderson
(Nobel Laureate 1977) argued that “The history of spin
glass may be the best example I know of the dictum that
a real scientific mystery is worth pursuing to the ends of
the Earth for its own sake, independently of any obvious
practical importance or intellectual glamour.” [3].

B. Solving the Replica Symmetry Breaking
Problem

For brevity of illustration we can consider a spin glass
as system of impurities or spins with a Hamiltonian

H = −
∑
i,k

Jikσiσk, (7)

where the Jik are uncorrelated Gaussian random vari-
ables with zero mean and variance J2

ik = Kik. Frus-
tration emerges by allowing both ferromagnetic and
anti-ferromagnetic couplings, and hence we expect a
“corrugated” energy landscape with many long-lived
metastable states. Within this framework, we can sketch
the developments in general heuristic terms. Edwards
and Anderson [24] considered a short-ranged interaction
so that Kik decreases rapidly with i−k distance. Impor-
tantly, they constructed an order parameter for the spin
glass phase that is the projection of a spin onto its orig-
inal orientation, allowing one to neglect long range spa-
tial ordering and instead consider long range temporal
ordering. Thus, upon waiting for a long period of time,
if their order parameter is finite the spins “remember”
their original orientation and in that sense form a glass.
Moreover, in order to average over macroscopic samples
wherein a vast number of different configurations of the
Jik are operative, they introduced the so-called “replica
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trick” making n copies or replicas of the partition func-
tion viz.,

lnZ = lim
n→0

Zn − 1

n
, (8)

thereby allowing properly averaged thermodynamic cal-
culations, F = −kT 〈lnZ〉ave .

In the same year Sherrington and Kirkpatrick [102]
came up with an infinite dimensional version of the Ed-
wards and Anderson model, so that Kik = N−1, where N
denotes the total number of spins. Whilst this allowed for
a valid mean-field calculation, it also revealed a paradox;
the entropy became negative at low temperature. Due
to the many states with very nearly equal energies and
no clear symmetry, computing convergent solutions was
a great challenge. The challenge, however, led to the idea
of simulated annealing [53]. In quick succession Thouless
(Nobel Laureate 2016), Anderson and Palmer [106] re-
solved the negative entropy problem, but were left with
the question of the stability of their solutions, and then
de Almeida and Thouless [21] pointed the finger at the
problem that “replica symmetry” was assumed. This led
to calculations of broken replica symmetry by Blandin
[13], and by Bray and Moore [14], but the subtleties of
just how to break replica symmetry were still illusive.

Giorgio Parisi solved the problem of replica symmetry
breaking by realizing that, in contrast to ferromagnets
which have only two “pure states” (up/down) in the or-
dered phase, there must be an infinite number within the
ordered phase of the spin glass [82, 83]. Not only did this
provide the solution, but it had a stunning array of ex-
tensions to a wide range of spin-glass and other systems
[68, 69, 84–86].

In order to realize the infinitude of states, Parisi’s great
leap was to introduce a new order parameter;

qαβ =
1

N

∑
i

〈σi〉α 〈σi〉β , (9)

wherein α and β are replicas. All of the qαα are equiv-
alent, representing the average overlaps of the states
within a given replica, and the off-diagonal terms mea-
sure the degree to which α and β resemble each other.
Namely, they describe the average overlap between states
belonging to replica solution α and those belonging to
replica solution β. In the glassy phase there is no unique
locally stable thermodynamic state, but many states,
each replica of which corresponds to a different solution
to the mean-field equations. These solutions are clusters
of states in the N -dimensional configuration space of the
N spins. The mathematics are beyond the scope of this
venue. A key concept it called ultrametricity, which is
a functional version of the triangle inequality, which we
all know from early school days; the sum of the lengths
of any two sides of a triangle are greater than or equal
to the length of the third. Here, ultrametricity can be
characterized using a network describing the states of
the system and one finds that upon choosing any three

states at random, at least two overlaps are equal so that
the disorder-average distribution of overlaps is

P (q) =
∑
α,β

wαwβδ (q − qαβ) , (10)

where the w’s are Boltzmann weights.

C. Applications and Implications

The broad reach of broken replica symmetry concepts
and methods has exploded since Parisi’s original work.
In particular, Parisi and his collaborators have shown
that in John Hopfield’s neural network model [50], and
its many offspring, the multiple memories stored in the
network correspond to the multiple equilibria of the spin
glass. Moreover, their methods allowed them to address
the classical optimization problem of the traveling sales-
man who stops at many local minima but of course the
global minimum/minima are the targets of interest [68].
At the time at which the book was published, David
Thouless wrote [107]:

I feel that the spin glass experts are like set-
tlers encamped in hostile territory. They have
interesting observations to make, but have
not learned how to communicate with the ear-
lier settlers. In some of the papers on neural
nets there is barely a reference to work by
scientists outside the spin glass community.

Clearly in the more than three decades since, the early
settlers have colonized widely across many communities.
These include (a) providing a basic understanding of
why some optimization tasks are easy and why some are
very difficult (see [70] and Refs therein), (b) the ran-
dom first order theory of structural glasses and (c) the
geometric theory of jamming in hard spheres, which is
an extremely successful application of mean-field bro-
ken replica symmetry, applying as it does from two- to
infinite-dimensions [89]. The approach sets the agenda
for experiments in classical granular matter [9] and is con-
firmed in detailed numerical analyses [16, 17, 95] in equi-
librium and under slow compression [93]. Moreover, the
marginal phase predicted by the replica theory of glasses,
has been directly observed experimentally in a slowly
densifying colloidal glass [37]. Importantly, experimen-
tal evidence of replica symmetry breaking has been pro-
vided in systems using random lasers [30, 33, 99, 108], in
plane cavity lasers without disorder but with frustration
between interacting lasing modes without added disor-
der [7, 74], and in nonlinear optical propagation through
photorefractive disordered waveguides [90]. Finally, the
nature of the random laser system allows for the con-
comitant observation of replica symmetry breaking and
connection between spin-glasses and turbulence [34], par-
ticularly nonlinear wave interactions, which link the early
work of Hasselmann [40, 41] to that of Parisi and to the
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role of disorder and fluctuations in complex systems in
general.

Random Lasers and Replica Symmetry Breaking

As noted above, one of the exciting areas in which
the two-peaked signature of first order replica symme-
try breaking, predicted by Eq. (10), is in random
lasers, wherein stimulated emission is complicated by the
medium in one manner or another [30, 33, 99, 108]. Be-
cause the energy density is controlled by the pump power,
the latter acts as the inverse temperature. Thus, as the
pump power increases, the nonlinearity in the system
plays the role of corrugating the energy landscape, anal-
ogous to the low temperature behavior in a glass. On the
other hand, for low pump power, the cavity modes are
ostensibly independent of each other, which is analogous
to the paramagnetic phase of the spin glass. Importantly,
a random laser has a large number of metastable states
whereas a chaotic laser has a small number of modes
that can exhibit exponential path divergence. This leads
to different spectral properties for each type of laser.
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FIG. 7. The distribution P (q) of the overlap qαβ for different
pump energies (shown in the inset) from [30]. As discussed
in the text, the pump energy plays the role of the inverse
temperature. As the pump energy increases the distribution
of first order replica symmetry breaking appears.

Ghofraniha et al. [30] quantify spectral data from a
random laser and analyze the fluctuations in emission
between different shots. The idea is that each emission
spectrum defines a replica, say α, of the random laser un-
der the same conditions. If the intensity fluctuation func-

tion is ∆α(k) = Iα(k)− Ī(k), where Ī(k) =
∑
α Iα(k)/Ns

is the average intensity at each wavelength indexed by k,
then the Parisi overlap function, Eq. (9), becomes

qαβ =

∑
k ∆α(k)∆β(k)√∑

k ∆2
α(k)

√∑
k ∆2

β(k)
. (11)

It is observed that there is a much larger spectral vari-
ation at strong pumping (“low T”) and the variance of
the emission intensity changes discontinuously at a par-
ticular energy, exhibiting a phase transition (Fig. 3 of
[30]). After having generated many shots a direct mea-
surement of P (q) is realized and demonstrates first order
replica symmetry breaking as shown in Fig. 7. That this
same result is found in different random laser systems
[99] speaks to the robust nature of this demonstration of
replica symmetry breaking.

Whilst we have dwelled upon the realization of replica
symmetry breaking, through the lens of fluctuations,
stochasticity and disorder, Giorgio Parisi has been in-
volved in uncovering the scaffolding of, and developing
the tendrils between, a stunning range of physical sys-
tems. A subset of these include stochasticity in quantum
field theory, the intermittency of turbulence, Euclidean
random matrices, non-equilibrium fluctuations in glasses,
stochastic interfacial motion, granular matter and the
role of random fluctuations in controlling Earth’s climate
states over long epochs.

VI. SUMMARY

Clearly this year’s Laureates have made groundbreak-
ing contributions to our understanding of complex physi-
cal systems in their broadest sense, from the microscopic
to the global. They show that without a proper account-
ing of disorder, noise and variability, determinism is just
an illusion. Indeed, the work recognized here reflects
in part the comment ascribed to Richard Feynman (No-
bel Laureate 1965), that he “Believed in the primacy of
doubt, not as a blemish on our ability to know, but as
the essence of knowing.”, [32].

Recognizing the work of this troika reflects the impor-
tance of understanding that no single prediction of any-
thing can be taken as inviolable truth, and that without
soberly probing the origins of variability we cannot un-
derstand the behavior of any system. Therefore, only
after having considered these origins do we understand
that global warming is real and attributable to our own
activities, that a vast array of the phenomena we observe
in nature emerge from an underlying disorder, and that
embracing the noise and uncertainty is an essential step
on the road towards predictability.
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[60] Manabe, S, Möller, F. 1961. On the radiative equilib-
rium and heat balance of the atmosphere. Mon. Wea.
Rev. 89, 503–32.

[61] Manabe, S, Strickler, RF. 1964. Thermal equilibrium of
the atmosphere with a convective adjustment J. Atmos.
Sci. 21, 361–85.

[62] Manabe, S, Wetherald, RT. 1967. Thermal equilibrium
of the atmosphere with a given distribution of relative
humidity. J. Atmos. Sci. 24, 241–259.

[63] Manabe, S, Wetherald, RT. 1975. The Effects of Dou-
bling the CO2 Concentration on the climate of a General
Circulation Model. J. Atmos. Sci. 32, 3–15.

[64] Mandelbrot, BB. 1974. Intermittent turbulence in self-

similar cascades: divergence of high moments and di-
mension of the carrier. J. Fluid Mech. 62, 331-58.

[65] Mann, ME, Steinman, BA, and Miller, SK. 2020. Ab-
sence of internal multidecadal and interdecadal oscilla-
tions in climate model simulations. Nat Commun 11,
1–9.

[66] Malkus, WVR. 2001. Borders of disorder. Stud. Appl.
Math. 107, 325-336.

[67] Meneveau, C. Sreenivasan, KR. 1987. Simple multifrac-
tal cascade model for fully developed turbulence. Phys.
Rev. Lett. 59, 1424-27.
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