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Materials and Methods 

The experimental setup 
The experimental apparatus is described in the subsections below: the electron microscope, the 

light system (laser and amplifier), the fabrication, and inverse design of our silicon-photonic 
nanostructure. 

The electron microscope and light source 
The experiments were performed using a system based on a JEOL JEM-2100 Plus TEM 

equipped with a Gatan GIF system and operating using a LaB6 electron filament in thermal 
emission mode. The TEM was modified to enable coupling light into the sample (described 
schematically in Fig. 3 from the main text), used previously for ultrafast TEM experiments (38, 
40). 

Data acquisition is done in the converged beam electron diffraction (CBED) mode. The electron 
beam diameter in the focal plane was 30 nm with a convergence angle of 0.3 mrad and a 0.6 eV 
FWHM zero-loss energy width. We aligned the nanostructure channel to the electron trajectory 
using a double-tilt holder (Mel-Build Hata Holder) with a custom cartridge to avoid shadowing 
the optical beam.  

A CW-driven distributed feedback (DFB) laser (QLD106p-64D0) emitting at 1060 nm served 
as a seed for a two-stage Yb fiber amplifier with a 4 nm filter between the two stages. The laser 
spot size was focused with a cylindrical lens to 51 μm FWHM along the electron trajectory and 
8.5 μm FWHM in the direction perpendicular to the electron and to the nanostructure channel.  

Fabrication of the silicon-photonic nanostructure 
The silicon-photonic nanostructure was fabricated by electron beam lithography (100 keV) and 

cryogenic reactive-ion etching of 1-5 Ωcm phosphorus-doped silicon to a depth of 2.8±0.1 µm 
(87). The surrounding substrate was etched away to form a 30-µm-high mesa, providing 
clearance for both electron beam and light beam. 

Photonic inverse design of the silicon-photonic nanostructure 
We used an open-source Python package based on a 2D-FDFD simulation (42). The structure 

was optimized over a 5-µm-wide design region in the 𝑥𝑥𝑥𝑥-plane, containing a 250-nm-wide vacuum 
channel in the center for the electrons to propagate through. Periodic boundaries were applied 
along the 𝑥𝑥-direction, enforcing the periodicity o f 733 nm, and perfectly m atched layers were 
defined along 𝑥𝑥 . A transverse-magnetic plane wave was excited from one side, and the resulting 
electric field 𝐸𝐸 𝑧𝑧  was computed in the center of the channel to find the acceleration gradient, 
which served as the objective function of the optimization (11, 88). The silicon-photonic 
nanostructure is shown in Fig. S1. 
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Supplementary Text 

S1. The theory of quantum and random walk 
In this section, we consider the interaction between light and free electrons and show how it 

can be described in terms of quantum walk, random walk, and the combination of the two. 

S1.1. The connection between the interaction of a free electron with coherent-state light to the 
quantum walk model 

Let us consider the following model describing the interaction between light and an electron in 
a discrete energy ladder. The energy ladder forms a synthetic dimension in which the electron 
makes discrete steps. At each step, the electron has the following three options: (i) absorb a photon 
and climb up one step in the energy ladder; (ii) emit a photon and go down one step in the energy 
ladder; (iii) no interaction, retaining its previous energy. Moreover, in this simple model, we 
consider that the emission and absorption have the same probabilities (which is a good 
approximation for large photon numbers). We further assume that the light is unperturbed by the 
interaction so we can consider the probabilities as constants throughout the walk. The electron 
wavefunction can be written as a column vector of complex number amplitudes, where each 
component of the column represents a monoenergetic state: 

|𝜓𝜓⟩ = (… ,𝜓𝜓−1,𝜓𝜓0,𝜓𝜓1, … )𝑇𝑇,    (S1.1) 
which denotes |𝜓𝜓⟩ ≡ ∑ 𝜓𝜓𝑘𝑘|𝐸𝐸0 + 𝑘𝑘ℏ𝜔𝜔⟩𝑘𝑘 , where |𝐸𝐸0 + 𝑘𝑘ℏ𝜔𝜔⟩ is a monoenergetic state with the 
energy 𝐸𝐸0 + 𝑘𝑘ℏ𝜔𝜔 (𝐸𝐸0 is the initial energy). After 𝑛𝑛 + 1 steps, the 𝑘𝑘P

th component has the following 
form: 

𝜓𝜓𝑘𝑘
(𝑛𝑛+1) = �1 − 2|𝑐𝑐|2𝜓𝜓𝑘𝑘

(𝑛𝑛) + 𝑐𝑐𝜓𝜓𝑘𝑘+1
(𝑛𝑛) + 𝑐𝑐∗𝜓𝜓𝑘𝑘−1

(𝑛𝑛) ,   (S1.2)
where 𝑐𝑐 is a complex number describing the transition amplitude of the interaction between light 
and the free electron. The recurrence relation Eq. (S1.2), together with the initial condition 𝜓𝜓𝑘𝑘

(0) =
𝛿𝛿𝑘𝑘0, gives the following probability to absorb (or emit) 𝑘𝑘 photons after 𝑁𝑁 steps: 

𝑃𝑃𝑘𝑘 = �𝜓𝜓𝑘𝑘
(𝑁𝑁)�

2
= |𝐽𝐽𝑘𝑘(2|𝛽𝛽|)|2, (S1.3) 

where 𝐽𝐽𝑘𝑘 is the Bessel function of the first kind of order 𝑘𝑘, and |𝛽𝛽| = |𝑐𝑐|𝑁𝑁. This result proves the 
equivalence between the quantum walk theory and free-electron interaction with coherent-state 
light because Eq. (S1.3), obtained from the discrete step quantum walk, precisely matches Eq. 
(S2.27), obtained from the quantum theory of photo-induced nearfield electron microscopy (Q-
PINEM) in Section S2 and Section S4 and in Refs. (25-26). 

S1.2 The connection between the interaction of a free electron with thermal-state light to the 
random walk model 

To model the electron interaction with thermal light, we adopt a similar approach to the previous 
section. However, instead complex number amplitudes, we consider classical probabilities. As 
before, a free electron can interact at each step with the thermal light in the following ways: (i) 
absorb a photon; (ii) emit a photon; (iii) no interaction. We consider the state of the electron to be 
described by a classical vector of probabilities: 

𝑃𝑃 = (… ,𝑃𝑃−1,𝑃𝑃0,𝑃𝑃1, … )𝑇𝑇 ,    (S1.4) 
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where 𝑃𝑃𝑘𝑘 denotes the electron probability to be found in energy level 𝐸𝐸0 + 𝑘𝑘ℏ𝜔𝜔. Thus, Eq. (S1.4) 
is an analog of Eq. (S1.1) for random walk. After 𝑛𝑛 + 1 steps, the electron probabilities are 
described by: 

𝑃𝑃𝑘𝑘
(𝑛𝑛+1) = (1 − 2𝑝𝑝)𝑃𝑃𝑘𝑘

(𝑛𝑛) + 𝑝𝑝𝑃𝑃𝑘𝑘+1
(𝑛𝑛) + 𝑝𝑝𝑃𝑃𝑘𝑘−1

(𝑛𝑛) ,   (S1.5)
where 𝑝𝑝 is the probability to emit a photon. Eq. (S1.5) has the following solution if the initial 
conditions are 𝑃𝑃𝑘𝑘

(0) = 𝛿𝛿𝑘𝑘0:
𝑃𝑃𝑘𝑘

(𝑁𝑁) = 𝑒𝑒−2|𝛽𝛽|2𝐼𝐼|𝑘𝑘|(2|𝛽𝛽|2),    (S1.6)
where |𝛽𝛽|2 = 𝑝𝑝 ⋅ 𝑁𝑁. This result proves the equivalence between the random walk theory and free-
electron interaction with thermal-state light because Eq. (S1.6), obtained from the discrete step 
random walk, precisely matches Eq. (S2.29), obtained from the Q-PINEM theory (23, 25, 26). 

S1.3 The continuous transition from quantum to random walk 
Sections S1.1 and S1.2 described the limits of random and quantum walk as models for the 

interaction of free electrons with light in thermal and coherent states, respectively. In this section, 
we consider the continuous transition between these two limiting cases.  

To describe the continuous transition, we employ the following model. The light is assumed to 
be in a mixture of coherent and thermal states, assuming 𝑛𝑛𝑐𝑐 photons from the coherent-state field, 
and 𝑛𝑛th photons from the thermal field. We find that the order of interactions with the free electron 
does not alter the final electron energy spectrum. Thus, we calculate the interaction by first 
applying the coherent-state photons. After the interaction with 𝑛𝑛𝑐𝑐 coherent photons according to 
Eq. (S1.3), the electron probability distribution of absorbing (or emitting) 𝑘𝑘 photons is: 

𝑃𝑃𝑘𝑘 = �𝐽𝐽𝑘𝑘 �2 |𝛽𝛽|
𝑁𝑁
𝑛𝑛𝑐𝑐  ��

2
, (S1.7) 

This electron now interacts with 𝑛𝑛𝑡𝑡ℎ thermal photons according to Eq. (S1.5). The final electron 
energy spectrum is calculated numerically using Eq. (S1.7) as the initial condition. 

Fig. S2 shows that the resulting electron energy spectrum precisely matches the full Q-PINEM 
calculation using the state of light of the amplifier theory Eq. (S4.1). Matching the theories 
involves defining a thermality parameter 𝑟𝑟th ∈ [0,1), which we show to be connected to the 
amplifier gain and seed in Eq. (S4.2). The thermality 𝑟𝑟𝑡𝑡ℎ is defined in the following way: 

�𝑛𝑛𝑐𝑐 = �1 − 𝑟𝑟th𝑁𝑁
𝑛𝑛𝑡𝑡ℎ = 𝑟𝑟𝑡𝑡ℎ𝑁𝑁

,    (S1.8)

with 𝑟𝑟th = 1 giving pure thermal light, and 𝑟𝑟th = 0 giving pure coherent-state light.  
To summarize this section, we showed a perfect match between free-electron interaction with light 
to the theory of quantum-to-random walk transition. Therefore, the theory of this section provides 
a simpler description for electron–light interactions in place of the rigorous Q-PINEM theory 
(Section S2), applied on the amplifier light (Section S3), and combined in Section S4.1. 
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S2. Interactions of free electrons with quantum light: the Q-PINEM theory 
Here we discuss the quantum theory of the interaction between free electrons and quantum light 

(i.e., the theory of Q-PINEM). We discuss the implications of this general theory, such as electron–
light entanglement, purity of the electron wave function, and the resulting electron energy loss 
spectra.  

S2.1. A general theory of the Q-PINEM interaction 
In this section, we formalize the free-electron-light interaction. According to Refs. (23, 25, 26), 

the scattering matrix of the interaction between free electrons and quantum light is described by: 
𝑆𝑆 = exp�𝑔𝑔q𝑏𝑏𝑎𝑎† − 𝑔𝑔q∗𝑏𝑏†𝑎𝑎�,    (S2.1) 

where 𝑔𝑔𝑞𝑞 is the quantum coupling constant, 𝑏𝑏 ≡ 𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖/𝑣𝑣, 𝑏𝑏† ≡ 𝑒𝑒𝑖𝑖𝑖𝑖𝑖𝑖/𝑣𝑣 are the electron energy 
ladder operators, and 𝑎𝑎, 𝑎𝑎† are the photonic annihilation and creation operators. The final state 
after the interaction can be written as: 

𝜌𝜌tot
(f) = 𝑆𝑆𝜌𝜌tot

(i)𝑆𝑆† , (S2.2) 
where 𝜌𝜌tot

(i) = |𝐸𝐸0⟩⟨𝐸𝐸0| ⊗𝜌𝜌ph. We define 𝜌𝜌ph as the initial density matrix of the quantum light and
|𝐸𝐸0⟩ as the initial electron state with a well-defined energy 𝐸𝐸0 (later, we will generalize it to an 
arbitrary initial electron state 𝜌𝜌el

(i)).

S2.2 The total density matrix following a Q-PINEM interaction 
In this section, we calculate the joint density matrix of the electron and light 𝜌𝜌tot

(f)  and show the
electron-light entanglement. We rewrite the scattering matrix Eq. (S2.1) as a Taylor series: 

𝑆𝑆 = 𝑒𝑒
�𝑔𝑔q�

2

2 ∑ �−𝑔𝑔q∗ �
𝑚𝑚
𝑔𝑔q𝑙𝑙

𝑚𝑚!𝑙𝑙!
(𝑏𝑏†𝑎𝑎)𝑚𝑚(𝑏𝑏𝑎𝑎†)𝑙𝑙∞

𝑚𝑚,𝑙𝑙=0 . (S2.3) 
We substitute Eq. (S2.3) into Eq. (S2.2), obtaining: 

𝜌𝜌tot
(f) = 𝑒𝑒�𝑔𝑔q�

2
∑ 𝜌𝜌ph(𝑛𝑛, 𝑛𝑛′)∞
𝑛𝑛,𝑛𝑛′=0 ∑ ∑ �−𝑔𝑔q∗ �

𝑚𝑚
𝑔𝑔q𝑙𝑙

𝑚𝑚!𝑙𝑙!
�−𝑔𝑔q�

𝑗𝑗
𝑔𝑔q∗

𝑘𝑘

𝑗𝑗!𝑘𝑘!
∞
𝑗𝑗,𝑘𝑘=0 𝑎𝑎𝑚𝑚(𝑎𝑎†)𝑙𝑙|𝑛𝑛⟩∞

𝑚𝑚,𝑙𝑙=0 ⟨𝑛𝑛′|𝑎𝑎𝑘𝑘(𝑎𝑎†)𝑗𝑗 
⊗ |𝐸𝐸0 + (𝑚𝑚− 𝑙𝑙)ℏ𝜔𝜔⟩⟨𝐸𝐸0 + (𝑗𝑗 − 𝑘𝑘)ℏ𝜔𝜔|,   (S2.4) 

where 𝜌𝜌ph(𝑛𝑛,𝑛𝑛′) = ⟨𝑛𝑛|𝜌𝜌ph|𝑛𝑛′⟩ is the element of the photonic density matrix in the number basis. 
Using 

⎩
⎪
⎨

⎪
⎧𝑎𝑎𝑚𝑚(𝑎𝑎†)𝑙𝑙|𝑛𝑛⟩ = �(𝑛𝑛+𝑙𝑙)!

𝑛𝑛!
� (𝑛𝑛+𝑙𝑙)!

(𝑛𝑛+𝑙𝑙−𝑚𝑚)!
|𝑛𝑛 + 𝑙𝑙 − 𝑚𝑚⟩ 

⟨𝑛𝑛′|𝑎𝑎𝑘𝑘(𝑎𝑎†)𝑗𝑗 = �(𝑛𝑛′+𝑘𝑘)!
𝑛𝑛′!

� (𝑛𝑛′+𝑘𝑘)!
(𝑛𝑛′+𝑘𝑘−𝑗𝑗)!

⟨𝑛𝑛′ + 𝑘𝑘 − 𝑗𝑗|
, (S2.5) 

we find the total density matrix in terms of entangled electron–photon states 
𝜌𝜌tot

(f) = ∑ 𝜌𝜌ph(𝑛𝑛,𝑛𝑛′)|Ψel−ph𝑛𝑛 ⟩⟨Ψel−ph𝑛𝑛′ |∞
𝑛𝑛,𝑛𝑛′=0 ,  (S2.6) 

where �Ψel−ph
(𝑛𝑛) � = ∑ 𝒞𝒞𝑝𝑝𝑛𝑛|𝐸𝐸0 − 𝑝𝑝ℏ𝜔𝜔⟩|𝑛𝑛 + 𝑝𝑝⟩∞

𝑝𝑝=−∞ , and the coefficients are given by: 

𝒞𝒞𝑝𝑝𝑛𝑛 = 𝑒𝑒𝑖𝑖𝜑𝜑𝑔𝑔𝑝𝑝 ∑ 𝑒𝑒
1
2�𝑔𝑔q�

2 (−1)𝑙𝑙−𝑝𝑝�𝑔𝑔q�
2𝑙𝑙−𝑝𝑝

(𝑙𝑙−𝑝𝑝)!𝑙𝑙!
(𝑛𝑛+𝑙𝑙)!

�𝑛𝑛!(𝑛𝑛+𝑝𝑝)!
∞
𝑙𝑙=max{0,𝑝𝑝} . 

We simplify further the expression for 𝒞𝒞𝑝𝑝𝑛𝑛  and get: 
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𝒞𝒞𝑝𝑝𝑛𝑛 = 𝑒𝑒𝑖𝑖𝜑𝜑𝑔𝑔𝑝𝑝𝑒𝑒
1
2�𝑔𝑔q�

2 �𝑔𝑔q�
|𝑝𝑝|

|𝑝𝑝|!

⎩
⎨

⎧ �(𝑛𝑛+𝑝𝑝)!
𝑛𝑛!

𝐹𝐹11
 �1 + 𝑛𝑛 + 𝑝𝑝, 1 + 𝑝𝑝,−�𝑔𝑔q�

2
� , 𝑝𝑝 > 0

(−1)|𝑝𝑝|� 𝑛𝑛!
(𝑛𝑛−|𝑝𝑝|)!

𝐹𝐹11
 �1 + 𝑛𝑛, 1 + |𝑝𝑝|,−�𝑔𝑔q�

2
� , 𝑝𝑝 < 0

, (S2.7) 

where 𝐹𝐹11
  is the hypergeometric function. An equivalent representation of Eq. (S2.7) appears after 

the Eq. (4) in the main text. 
We note that in the limit of weak interactions �𝑔𝑔q� ≪ 1, the coefficients 𝒞𝒞𝑝𝑝𝑛𝑛 are simplified. 

Rearranging the terms, we get 

𝒞𝒞𝑝𝑝𝑛𝑛 = 𝑒𝑒𝑖𝑖𝜑𝜑𝑔𝑔𝑝𝑝�(𝑛𝑛+𝑝𝑝)!
𝑛𝑛𝑝𝑝𝑛𝑛!

∑ 𝑒𝑒
1
2�𝑔𝑔q�

2 (−1)𝑙𝑙−𝑝𝑝�𝑔𝑔q�
2𝑙𝑙−𝑝𝑝�𝑛𝑛2𝑙𝑙−𝑝𝑝

(𝑙𝑙−𝑝𝑝)!𝑙𝑙!
(𝑛𝑛+𝑙𝑙)!

𝑛𝑛𝑙𝑙−𝑝𝑝(𝑛𝑛+𝑝𝑝)!
∞
𝑙𝑙=max{0,𝑝𝑝} . (S2.8) 

For small �𝑔𝑔q� ≪ 1, the dominant contributions come from large 𝑛𝑛. In this limit, we obtain 
(𝑛𝑛+𝑙𝑙)!

𝑛𝑛𝑙𝑙−𝑝𝑝(𝑛𝑛+𝑝𝑝)!
→ 1,  �(𝑛𝑛+𝑝𝑝)!

𝑛𝑛𝑝𝑝𝑛𝑛!
→ 1, 𝑒𝑒

1
2�𝑔𝑔q�

2
→ 1,

such that 
 𝒞𝒞𝑝𝑝𝑛𝑛 = 𝑒𝑒𝑖𝑖𝜑𝜑𝑔𝑔𝑝𝑝 ∑ (−1)𝑙𝑙−𝑝𝑝

(𝑙𝑙−𝑝𝑝)!𝑙𝑙!
��𝑔𝑔q�√𝑛𝑛�

2𝑙𝑙−𝑝𝑝∞
𝑙𝑙=max{0,𝑝𝑝} = 𝑒𝑒𝑖𝑖𝜑𝜑𝑔𝑔𝑝𝑝𝐽𝐽𝑝𝑝�2�𝑔𝑔q�√𝑛𝑛�. (S2.9) 

Let’s consider coherent-state light and show the absence of electron–photon 
entanglement for strong coherent-state light. In the case of coherent-state light, we have the 
following photon density matrix: 

𝜌𝜌ph(𝑛𝑛, 𝑛𝑛′) = 𝑒𝑒−|𝛼𝛼|2 𝛼𝛼𝑛𝑛

√𝑛𝑛!
𝛼𝛼∗𝑛𝑛

′

√𝑛𝑛′!
, (S2.10) 

Since the density matrix in Eq. (S2.10) is separable in 𝑛𝑛 and 𝑛𝑛′, we can deduce that the total 
density matrix is a pure state: 

𝜌𝜌tot
(f) = |Ψ𝛼𝛼⟩⟨Ψ𝛼𝛼|, (S2.11) 

where 
|Ψ𝛼𝛼⟩ = ∑ �∑ 𝑒𝑒−

1
2

|𝛼𝛼|2 𝛼𝛼𝑛𝑛

√𝑛𝑛!
 |𝑛𝑛 + 𝑝𝑝⟩∞

𝑛𝑛=0 �∞
𝑝𝑝=−∞ 𝒞𝒞𝑝𝑝𝑛𝑛|𝐸𝐸0 − 𝑝𝑝ℏ𝜔𝜔⟩. (S2.12) 

Hence, we showed that the interaction with coherent-state light leads to the completely pure state 
of the joint density matrix. However, Eq. (S2.12) shows that in the general case, there is 
entanglement between the electron and photon parts of the wavefunction, i.e., |Ψ𝛼𝛼⟩ cannot be 
decomposed into a tensor product of the two subsystem states. However, in the limit of small �𝑔𝑔q�, 
we can substitute Eq. (S2.9) and get 

|Ψ𝛼𝛼⟩ = ∑ �∑ 𝑒𝑒−
|𝛼𝛼|2

2
𝛼𝛼𝑛𝑛

√𝑛𝑛!
 |𝑛𝑛 + 𝑝𝑝⟩∞

𝑛𝑛=0 �∞
𝑝𝑝=−∞ 𝑒𝑒𝑖𝑖𝜑𝜑𝑔𝑔𝑝𝑝𝐽𝐽𝑝𝑝�2�𝑔𝑔q�√𝑛𝑛�|𝐸𝐸0 − 𝑝𝑝ℏ𝜔𝜔⟩. (S2.13) 

For large |𝛼𝛼|2 ≫ 1, the distribution is narrowly peaked around 𝑛𝑛 ≈ |𝛼𝛼|2, which allows us to write 
to a good approximation 

|Ψ𝛼𝛼⟩ = ∑ 𝑒𝑒𝑖𝑖𝜑𝜑𝑔𝑔𝑝𝑝𝐽𝐽𝑝𝑝�2�𝑔𝑔q𝛼𝛼��|𝐸𝐸0 − 𝑝𝑝ℏ𝜔𝜔⟩∞
𝑝𝑝=−∞ ⊗ |𝛼𝛼⟩,  (S2.14) 

showing that in the semiclassical limit, the final joint electron–photon state is both pure and 
separable, i.e., not entangled. 

Let’s consider thermal light and show the emergence of electron–photon entanglement. The 
density matrix of the thermal state has the following diagonal form: 

𝜌𝜌ph(𝑛𝑛, 𝑛𝑛′) = 1
〈𝑛𝑛〉+1

� 〈𝑛𝑛〉
〈𝑛𝑛〉+1

�
𝑛𝑛
𝛿𝛿𝑛𝑛,𝑛𝑛′ . (S2.15) 
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Substituting the thermal density matrix Eq. (S2.15) into Eq. (S2.6), we get: 
𝜌𝜌tot = ∑ 1

〈𝑛𝑛〉+1
� 〈𝑛𝑛〉
〈𝑛𝑛〉+1

�
𝑛𝑛

|Ψe−ph
(𝑛𝑛) ⟩⟨Ψe−ph

(𝑛𝑛) |∞
𝑛𝑛=0 , (S2.16) 

The state Eq. (S2.16) is not a pure state. Moreover, it cannot be separated into a tensor product of 
electron and light density matrices, i.e., it could contain electron–photon entanglement. 

S2.3 The electron density matrix following the Q-PINEM interaction 
In this section, we calculate the electron density matrix after a Q-PINEM interaction. The 

electron density matrix after the interaction equals to: 
𝜌𝜌el = Trph�𝑆𝑆𝜌𝜌tot

(i)𝑆𝑆†�, (S2.17) 
where Trph is the trace with respect to the photonic degrees of freedom. We apply the photon 
trace-out on the total density matrix Eq. (S2.6-7), yielding the electron density matrix: 

𝜌𝜌el
(f) = ∑ ∑ �∑ 𝜌𝜌ph(𝑛𝑛 + 𝑘𝑘, 𝑛𝑛 + 𝑘𝑘′)𝐷𝐷𝑘𝑘𝑛𝑛𝐷𝐷𝑘𝑘′

𝑛𝑛∗∞
𝑛𝑛=0 ����������������������

𝜌𝜌el
(f)(𝑘𝑘,𝑘𝑘′)

∞
𝑘𝑘′=−∞ |𝐸𝐸0 + 𝑘𝑘ℏ𝜔𝜔⟩⟨𝐸𝐸0 + 𝑘𝑘′ℏ𝜔𝜔|∞

𝑘𝑘=−∞ ,      (S2.18)

where 

𝒟𝒟𝑘𝑘
𝑛𝑛 = 𝑒𝑒

�𝑔𝑔q�
2

2

√𝑛𝑛!
𝑒𝑒−𝑖𝑖⋅arg�𝑔𝑔q�𝑘𝑘 ∑

(𝑛𝑛+𝑚𝑚)!(−1)𝑚𝑚�𝑔𝑔q�
2𝑚𝑚−𝑘𝑘

�(𝑛𝑛+𝑘𝑘)!𝑚𝑚!(𝑚𝑚−𝑘𝑘)!
∞
𝑚𝑚=max{0,𝑘𝑘} = 𝒞𝒞−𝑘𝑘𝑛𝑛+𝑘𝑘. (S2.19) 

Note that in terms of the continuous free-electron energies 𝐸𝐸,𝐸𝐸′ measured in the experiment, 
the final electron density matrix can be expressed as the convolution of 𝜌𝜌el

(f)(𝑘𝑘,𝑘𝑘′) with 𝜌𝜌el
(i)(𝐸𝐸,𝐸𝐸′).

The first part, defined in Eq. (S2.18) is a discrete electron energy comb with peaks that depend on 
the photon density matrix. The second part is the initial electron density matrix 𝜌𝜌el

(i)(𝐸𝐸,𝐸𝐸′), which
includes its incoherent broadening and zero-loss peak from the process of electron photoemission 
at the tip. Together, we can write: 

𝜌𝜌el
(f)(𝐸𝐸,𝐸𝐸′) = 𝜌𝜌el

(i)(𝐸𝐸,𝐸𝐸′) ∗ ∑ ∑ 𝜌𝜌el
(f)(𝑘𝑘,𝑘𝑘′)𝛿𝛿(𝐸𝐸 − 𝑘𝑘ℏ𝜔𝜔)𝛿𝛿(𝐸𝐸′ − 𝑘𝑘′ℏ𝜔𝜔)∞

𝑘𝑘′=−∞
∞
𝑘𝑘=−∞ . (S2.20)

We use Eqs. (S2.19-20) to calculate the electron density matrix for different photonic states, as 
shown in Fig. S3 for different amplifier parameters (see also Section S3 for further details). 

S2.4 Purity of the electron density matrix 
This section investigates the purity of the electron state after the interaction to qualitatively 

estimate the entanglement between the initially pure electron and the light. The purity is defined 
as follows: 

purity = Tr�𝜌𝜌el2�
(Tr𝜌𝜌el)2

=
∑ 𝜌𝜌el(𝑝𝑝,𝑞𝑞)𝜌𝜌el(𝑞𝑞,𝑝𝑝)𝑝𝑝,𝑞𝑞

1
= ∑ |𝜌𝜌el(𝑝𝑝, 𝑞𝑞)|2𝑝𝑝,𝑞𝑞 .  (S2.21)

For coherent states, substituting Eq. (S2.10) into Eq. (S2.18), we get the electron density matrix: 
𝜌𝜌el(𝑘𝑘, 𝑘𝑘′) = ∑ 𝒟𝒟𝑘𝑘

𝑛𝑛𝒟𝒟𝑘𝑘′
𝑛𝑛 ∗𝑒𝑒−|𝛼𝛼|2 𝛼𝛼𝑛𝑛+𝑘𝑘𝛼𝛼∗𝑛𝑛+𝑘𝑘

′

�(𝑛𝑛+𝑘𝑘)!�(𝑛𝑛+𝑘𝑘′)!𝑛𝑛 = ∑ 𝒟𝒟𝑘𝑘
𝑛𝑛𝒟𝒟𝑘𝑘′

𝑛𝑛 ∗ 𝑒𝑒−|𝛼𝛼|2 |𝛼𝛼|2𝑛𝑛

𝑛𝑛!�������
𝑝𝑝(𝑛𝑛)

𝑛𝑛!𝛼𝛼𝑘𝑘𝛼𝛼∗𝑘𝑘
′

�(𝑛𝑛+𝑘𝑘)!�(𝑛𝑛+𝑘𝑘′)!𝑛𝑛 ,                    (S2.22)

For strong coherent-state light |𝛼𝛼|2 ≫ 1 and �𝑔𝑔q� ≪ 1, 𝑝𝑝(𝑛𝑛) is narrowly peaked around 𝑛𝑛 ≈  |𝛼𝛼|2 
such that: 

𝜌𝜌el(𝑘𝑘,𝑘𝑘′) ≈ 𝒟𝒟𝑘𝑘
|𝛼𝛼|2 �𝒟𝒟𝑘𝑘′

|𝛼𝛼|2�
∗ Γ�|𝛼𝛼|2+1�𝛼𝛼𝑘𝑘𝛼𝛼∗𝑘𝑘

′

�Γ(|𝛼𝛼|2+𝑘𝑘+1)⋅Γ(|𝛼𝛼|2+𝑘𝑘′+1)
= 
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= �𝒟𝒟𝑘𝑘
|𝛼𝛼|2� Γ(|𝛼𝛼|2+1)

Γ(|𝛼𝛼|2+𝑘𝑘+1)𝛼𝛼
𝑘𝑘� ⋅ �𝒟𝒟𝑘𝑘

|𝛼𝛼|2� Γ(|𝛼𝛼|2+1)
Γ(|𝛼𝛼|2+𝑘𝑘′+1)𝛼𝛼

𝑘𝑘′�
∗

. (S2.23) 

Hence, according to Eq. (S2.23), the final electron density matrix is separable: 
𝜌𝜌el(𝑘𝑘,𝑘𝑘′) = 𝜓𝜓el(𝑘𝑘)𝜓𝜓𝑒𝑒l∗ (𝑘𝑘′), (S2.24) 

which implies purity of unity because 
purity = ∑ |𝜌𝜌el(𝑝𝑝, 𝑞𝑞)|2𝑝𝑝,𝑞𝑞 = ∑ 𝜌𝜌el(𝑝𝑝)𝜌𝜌𝑒𝑒l(𝑞𝑞)𝑝𝑝,𝑞𝑞 = 1.  (S2.25) 

This is in accordance with Eq. (S2.14), where we saw that the final electron–photon state is pure 
and separable.

In the case of the interaction with a thermal state, the initial density matrix of the photonic state 
is given by Eq. (S2.15). Hence, the density matrix of the electron according to Eq. (S2.18) is 
diagonal: 

𝜌𝜌el(𝑘𝑘,𝑘𝑘′) = 𝛿𝛿𝑘𝑘,𝑘𝑘′ ∑ �𝒟𝒟𝑝𝑝
𝑛𝑛�
2 1
〈𝑛𝑛〉+1

� 〈𝑛𝑛〉
1+〈𝑛𝑛〉

�
𝑛𝑛+𝑘𝑘

𝑛𝑛 , (S2.26) 
showing that the density matrix is diagonal. According to Eq. (S2.26), the purity equals: 

purity = ∑ |𝜌𝜌el(𝑝𝑝, 𝑞𝑞)|2𝑝𝑝,𝑞𝑞 = ∑ |𝜌𝜌el(𝑘𝑘,𝑘𝑘)|2𝑘𝑘 = ∑ 𝑃𝑃𝑘𝑘2𝑘𝑘 ,  (S2.27) 
where 𝑃𝑃𝑘𝑘 is the electron energy probability (as given for thermal light in Eq. (S2.32) below). Note 
that Eq. (S2.27) also holds for free-electron interaction with a Fock state. 

In Fig. S4, we plot the purity of the final electron state following an interaction as a function of 
the interaction strength. In Section S4, the purity of the final electron state is plotted in Fig. S8 as 
a function of amplifier parameters, showing the transition from coherent to thermal states of light. 

S2.5 Analysis of the diagonal elements of the total density matrix and quantifying the electron–
light entanglement 

According to Eq. (S2.4) and according to Ref. (23), the diagonal elements of the total density 
matrix following the Q-PINEM interaction 𝑃𝑃𝑛𝑛𝑛𝑛 ≡ (⟨𝑛𝑛| ⊗ ⟨𝐸𝐸0 + 𝑘𝑘ℏ𝜔𝜔|)𝜌𝜌tot

(f) (|𝐸𝐸0 + 𝑘𝑘ℏ𝜔𝜔⟩⊗ |𝑛𝑛⟩)
are: 

𝑃𝑃𝑛𝑛𝑛𝑛 = �
�𝑔𝑔q�

2𝑘𝑘
𝑒𝑒�𝑔𝑔q�

2 (𝑛𝑛+𝑘𝑘)!
(𝑘𝑘!)2𝑛𝑛!

� 𝐹𝐹11
 �𝑛𝑛 + 𝑘𝑘 + 1,𝑘𝑘 + 1,−�𝑔𝑔q�

2
��
2
𝑝𝑝𝑛𝑛+𝑘𝑘, 𝑘𝑘 > 0

�𝑔𝑔q�
2|𝑘𝑘|

𝑒𝑒�𝑔𝑔q�
2 𝑛𝑛!

(𝑘𝑘!)2(𝑛𝑛−|𝑘𝑘|)!
� 𝐹𝐹11

 �𝑛𝑛 + 1, |𝑘𝑘| + 1,−�𝑔𝑔q�
2
��
2
𝑝𝑝𝑛𝑛−|𝑘𝑘|, 𝑘𝑘 < 0

,        (S2.28) 

where 𝑝𝑝𝑛𝑛 is the probability of the light to have 𝑛𝑛 photons (satisfying 𝑝𝑝𝑛𝑛 = ∑ 𝑃𝑃𝑛𝑛𝑛𝑛𝑘𝑘 ). In the case of 
large average number of photons 〈𝑛𝑛〉 ≫ 1 and weak interaction �𝑔𝑔q� ≪ 1, Eq. (S2.28) can be 
simplified to: 

𝑃𝑃𝑛𝑛𝑛𝑛 = �𝐽𝐽|𝑘𝑘|�2�𝑔𝑔𝑞𝑞�√𝑛𝑛 + 𝑘𝑘��
2
⋅ 𝑝𝑝𝑛𝑛+𝑘𝑘.   (S2.29)

We use the following formula to quantify the light–electron correlations (plotted in Fig. S5): 
correlations ≡ ∑ |𝑃𝑃𝑛𝑛𝑛𝑛 − 𝑝𝑝𝑛𝑛𝑃𝑃𝑘𝑘|𝑛𝑛,𝑘𝑘 ,    (S2.30) 

where 𝑃𝑃𝑘𝑘 = ∑ 𝑃𝑃𝑛𝑛𝑛𝑛𝑛𝑛  is the probability of the electron to absorb 𝑘𝑘 photons. If the joint state has 
vanishing correlations, it means that the state is separable and does not contain any entanglement 
between the electron and photons. For correlations > 0, the state could be entangled, and Eq. 
(S2.30) provides an estimate for how strong the entanglement is. In Fig. S5, we plot the correlations 
of the final joint state for two cases: interaction with coherent- and thermal-state light as a function 
of the interaction strength. As can be seen in the figure, the coherent state interaction creates weak 
correlations, while for the thermal state interaction, the correlations are strong. This result explains 
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the conclusions in the main text about the role of photon statistics in creating quantum correlations 
and altering the eventual electron energy spectrum. 

S2.6 Analysis of the diagonal elements of the electron density matrix and predictions for the 
measured electron energy spectrum 

The diagonal elements of the electron density matrix, according to Eq. (S2.21), equals (23): 

𝑃𝑃𝑘𝑘 = �
Tr �𝜌𝜌ph ⋅ �𝑔𝑔q�

2𝑘𝑘
𝑒𝑒�𝑔𝑔q�

2 𝑛𝑛�!
(𝑘𝑘!)2(𝑛𝑛�−𝑘𝑘)!

� 𝐹𝐹11
 �𝑛𝑛� + 1,𝑘𝑘 + 1,−�𝑔𝑔q�

2
��
2
� , 𝑘𝑘 > 0

Tr �𝜌𝜌ph ⋅  �𝑔𝑔q�
2|𝑘𝑘|

𝑒𝑒�𝑔𝑔q�
2 (𝑛𝑛�+|𝑘𝑘|)!

(|𝑘𝑘|!)2𝑛𝑛!
� 𝐹𝐹11

 �𝑛𝑛� + |𝑘𝑘| + 1, |𝑘𝑘| + 1,−�𝑔𝑔q�
2
��
2
� , 𝑘𝑘 < 0

.         

(S2.31) 
In the case of 〈𝑛𝑛〉 ≫ 1 and �𝑔𝑔q� ≪ 1, we can simplify Eq. (S2.31): 

𝑃𝑃𝑘𝑘 = ∑ �𝐽𝐽𝑘𝑘�2�𝑔𝑔q�√𝑛𝑛 + 𝑘𝑘��
2
𝑝𝑝𝑛𝑛+𝑘𝑘𝑛𝑛 . (S2.32) 

The coherent state has the following statistics: 
𝑝𝑝𝑛𝑛 = 𝑒𝑒−〈𝑛𝑛〉 〈𝑛𝑛〉

𝑛𝑛

𝑛𝑛!
, (S2.33) 

where the average number of photons equals 〈𝑛𝑛〉 = |𝛼𝛼|2. Substituting Eq. (S2.33) into Eq. (S2.32), 
we approximately get for 𝑔𝑔q ≪ 1: 

𝑃𝑃𝑘𝑘 ≈ �𝐽𝐽|𝑘𝑘|(2|𝑔𝑔|)�
2

, (S2.34) 
where |𝑔𝑔| = �𝑔𝑔q��〈𝑛𝑛〉. 

The thermal statistics has the following form: 
𝑝𝑝𝑛𝑛 = 1

1+〈𝑛𝑛〉
� 〈𝑛𝑛〉
1+〈𝑛𝑛〉

�
𝑛𝑛

. (S2.35) 
Substituting Eq. (S2.35) into Eq. (S2.32), we get the following electron energy spectrum: 

𝑃𝑃𝑘𝑘 = 𝑒𝑒−2|𝑔𝑔|2𝐼𝐼|𝑘𝑘|(2|𝑔𝑔|2),    (S2.36) 
where again |𝑔𝑔| = �𝑔𝑔q��〈𝑛𝑛〉.  The electron energy spectrum is calculated according to Eq. (S2.34) 
and Eq. (S2.36) and plotted in Fig. S6.  

S2.7 Quantum weak measurement of photonic states using free electrons 
In this section, we consider how the electron affects the light during its interaction. We calculate 

the quantum fidelity, which shows when the electron can be understood as a probe performing 
quantum weak measurement of the state of light. 

We consider the light as our system and the free electron as the measurement device (pointer). 
The final joint state following the interaction is described by Eqs. (S2.6-7). Our pointer (electron) 
is measured strongly, i.e., projected on a specific energy value 𝑀𝑀 = |𝐸𝐸′⟩⟨𝐸𝐸′|, giving the final joint 
state 

𝑀𝑀𝜌𝜌tot
(f)𝑀𝑀 = 𝜌𝜌ph

(𝑘𝑘) ⊗ |𝐸𝐸′⟩⟨𝐸𝐸′|. (S2.37) 
Therefore, the act of measurement is a detection of a certain 𝑘𝑘P

th electron energy peak. As in the 
previous sections, we use the index 𝑘𝑘 = 𝐸𝐸′−𝐸𝐸

ℏ𝜔𝜔
 to represent the discretized electron energy change, 

with 𝑘𝑘 > 0 corresponding to subtraction of photons from the field. The density matrix of the 
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photonic system 𝜌𝜌ph
(𝑘𝑘) following the measurement can be written in a closed-form expression when

considering a weak interaction (�𝑔𝑔q� ≪ 1) using Eq. (S2.9):  
𝜌𝜌ph

(𝑘𝑘) = 1
𝑁𝑁(𝑘𝑘) ∑ ∑ 𝜌𝜌ph(𝑛𝑛 + 𝑘𝑘, 𝑛𝑛′ + 𝑘𝑘)𝐽𝐽𝑘𝑘�2�𝑔𝑔q�√𝑛𝑛 + 𝑘𝑘�𝐽𝐽𝑘𝑘�2�𝑔𝑔q�√𝑛𝑛′ + 𝑘𝑘�|𝑛𝑛⟩⟨𝑛𝑛′|∞

𝑛𝑛′=0
∞
𝑛𝑛=0 .   (S2.38) 

 The normalization factor 𝑁𝑁(𝑘𝑘) is 
𝑁𝑁(𝑘𝑘) = ∑ 𝜌𝜌ph(𝑛𝑛 + 𝑘𝑘,𝑛𝑛 + 𝑘𝑘)𝐽𝐽𝑘𝑘2�2�𝑔𝑔q�√𝑛𝑛 + 𝑘𝑘�∞

𝑛𝑛=0 = ∑ 𝑝𝑝𝑛𝑛+𝑘𝑘𝐽𝐽𝑘𝑘2�2�𝑔𝑔q�√𝑛𝑛 + 𝑘𝑘�∞
𝑛𝑛=0 .   (S2.39) 

To quantify what is considered as a quantum weak measurement, we calculate the fidelity 𝐹𝐹𝑘𝑘 
between the state of the light 𝜌𝜌ph

(𝑘𝑘) after the measurement and its initial state 𝜌𝜌ph. Weak
measurement is defined by fidelity 𝐹𝐹𝑘𝑘 that approaches unity (55): 

𝐹𝐹𝑘𝑘 = �tr��𝜌𝜌ph𝜌𝜌ph
(𝑘𝑘)
�𝜌𝜌ph�

2

→ 1,  (S2.40) 

In Fig. S7, we plot the fidelities 𝐹𝐹𝑘𝑘 for different quantum optical states (coherent state, thermal 
state, and Fock state). For a coherent state of many photons with a small 𝑔𝑔q, the measurement is 
always weak, whereas for the Fock state, it is always strong, except for the case of post-selection 
on 𝑘𝑘 = 0. For a thermal state, the fidelity is lower than with a coherent state and decays more 
quickly for larger |𝑘𝑘|. I nterestingly, the f idelity o f t he m easured c oherent s tate i s a symmetric 
around 𝑘𝑘  = 0. The reason for this behavior stems from the fundamental difference between 
photon numbers subtracted and photon number added coherent states (89), which follow 
substantially different photon statistics. For photon subtraction (𝑘𝑘  > 0), the state is retained, 
whereas for photon addition (𝑘𝑘  < 0), the state changes more strongly. Still, both cases undergo 
a smaller change relative to the interaction with a thermal state. For a thermal state, the fidelity 
reduces substantially for both photon subtraction and addition in a rather symmetric fashion. 
Obviously, for the Fock state, adding or subtracting even just one photon completely changes the 
state, and the fidelity vanishes for all 𝑘𝑘  ≠ 0.  

S3. Quantum optical properties of amplifier light: theory and analysis of the amplifier 
In this section, we analyze the quantum properties of the light created by an amplifier. 

S3.1. Quantum optical analysis of an amplifier model
To calculate the photon statistics in our experiment, we model our amplifier as a traveling-wave 

gain medium. This approach is a standard method to analyze a variety of amplifying gain media, 
such as fiber amplifiers. We denote the input field as 𝑎𝑎in, the noise field by 𝑏𝑏𝒩𝒩, and the amplifier 
gain by 𝒢𝒢 > 1. The output field is then given as (5): 

𝑎𝑎out = �𝒢𝒢𝑎𝑎in + �𝒢𝒢 − 1𝑏𝑏𝒩𝒩
† .    (S3.1) 

This corresponds to an effective two-mode squeezing operation of the form 
𝑆𝑆(𝑟𝑟) = exp�𝑟𝑟𝑎𝑎in𝑏𝑏𝒩𝒩 − 𝑟𝑟𝑎𝑎in

† 𝑏𝑏𝒩𝒩
† �,    (S3.2) 

where the squeeze parameter 𝑟𝑟 satisfies �𝒢𝒢 = cosh 𝑟𝑟. The initial state of the amplifier is modeled 
as a coherent-state input seed |𝛼𝛼⟩ and a vacuum noise field |0⟩ such that the initial state is |Ψi⟩ =
|𝛼𝛼, 0⟩. Subsequently, the final state satisfies 

|Ψf⟩ = 𝑆𝑆(𝑟𝑟)|𝛼𝛼, 0⟩ = 𝑆𝑆(𝑟𝑟)𝐷𝐷in(𝛼𝛼)|0,0⟩,   (S3.3) 
with 𝐷𝐷 in(𝛼𝛼 ) denoting a displacement operator of the input field mode. We can exchange the 
order of the displacement and squeeze operator to have (90): 
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|Ψf⟩ = 𝐷𝐷in(𝛼𝛼 cosh 𝑟𝑟)𝐷𝐷𝒩𝒩(−𝛼𝛼∗ sinh 𝑟𝑟)𝑆𝑆(𝑟𝑟)|0,0⟩,   (S3.4) 
where now, 𝐷𝐷𝒩𝒩(𝛼𝛼) is a displacement operator in the noise field.  

We need to trace out the noise field if we want to find the state of the output field. Tracing out 
one mode of the two-mode squeezed coherent state given in Eq. (S3.4) yields a displaced thermal 
state for the output field, given by the Glauber 𝑃𝑃 -function (91), which is a function of a 
complex number 𝛽𝛽  

𝑃𝑃(𝛽𝛽) = 1
𝜋𝜋(𝒢𝒢−1) exp �− �𝛽𝛽−�𝒢𝒢𝛼𝛼�

2

𝒢𝒢−1
�. (S3.5) 

From the 𝑃𝑃-function we can calculate the probability distribution by integrating over the complex 
plane 𝑝𝑝𝑛𝑛 = ∫𝑑𝑑2𝛽𝛽  𝑃𝑃(𝛽𝛽)𝑒𝑒−|𝛽𝛽|2|𝛽𝛽|2𝑛𝑛/𝑛𝑛!, yielding 

𝑝𝑝𝑛𝑛 = 𝑒𝑒−|𝛼𝛼|2 1
𝒢𝒢
�1 − 1

𝒢𝒢
�
𝑛𝑛
𝐿𝐿𝑛𝑛 �−

|𝛼𝛼|2

𝒢𝒢−1
�, (S3.6) 

where 𝐿𝐿𝑛𝑛(𝑥𝑥) is the 𝑛𝑛-th Laguerre polynomial. According to Eq. (S3.6), the photon statistics is 
described by 𝛼𝛼, the coherent amplitude of the input seed and 𝒢𝒢 = 𝒢𝒢(|𝛼𝛼|2), the gain function of the 
amplifier, which is defined as the ratio between the output and input power (shown below in Fig. 
S10D). We use these two parameters, 𝛼𝛼 and 𝒢𝒢, to characterize the regime of operation of the 
amplifier. This way, the fitting enables us to extract the amplifier gain curve 𝒢𝒢 = 𝒢𝒢(|𝛼𝛼|2).  

For a weak seed |𝛼𝛼|2 ≪ 1 and 𝒢𝒢 ≫ 1, we obtain the expected limit of a thermal state. In the 
other limit, a coherent-like state with Poissonian statistics is obtained for a saturated amplifier with 
an amplification 𝒢𝒢, and an average number of photons of the input seed ⟨𝑛𝑛in⟩ = |𝛼𝛼|2 ≫ 1. In 
between, we obtain a range of states with super-Poissonian statistics, which span the entire range 
from thermal to the Poissonian statistics of coherent states. This situation can also be viewed in 
the following manner: when the amplifier is in the linear regime, the added noise has pure thermal 
statistics. The noise dominates the output light for a very weak seed. For a larger seed |𝛼𝛼|2 ≫
1, the amplifier saturates. The added noise spectral density reduces substantially (51), and the 
amplifier noise statistics changes (50). However, the signal to noise ratio is very large, so the 
Poissonian statistics of the amplified signal dominates, and a coherent-like state is obtained, i.e., 
the statistics is Poissonian even if not always having the same degree of coherence as an ideal 
coherent state. In between, the added noise has contributions from the modified amplifier noise 
statistics and from the Poissonian amplified signal so that the resulting noise exhibits a transition 
from thermal to Poissonian statistics that is determined by |𝛼𝛼|2.We now consider the limiting cases 
of the coherent-like and the thermal states in more detail. 
The limit of amplified coherent-state light: 

Let us consider the case |𝛼𝛼|2 ≫ 1 and saturated 𝒢𝒢. In this case, Eq. (S3.6) has Poissonian 
statistics: 

𝑝𝑝𝑛𝑛 ≈ 𝑒𝑒−〈𝑛𝑛〉 〈𝑛𝑛〉
𝑛𝑛

𝑛𝑛!
, (S3.7) 

where 〈𝑛𝑛〉 ≈ 𝒢𝒢 ⋅ |𝛼𝛼|2. This equation completely coincides with the statistics of coherent-state light 
given by Eq. (S2.33). 
The limit of amplified spontaneous emission (ASE), creating thermal light: 

Let us consider a completely different case |𝛼𝛼|2 ≪ 1 and 𝒢𝒢 ≫ 1. In this case, the statistics of 
Eq. (S3.6) can be simplified in the following way: 

𝑝𝑝𝑛𝑛 = 1
〈𝑛𝑛〉+1

� 〈𝑛𝑛〉
〈𝑛𝑛〉+1

�
𝑛𝑛

, (S3.8) 
where 〈𝑛𝑛〉 ≈ 𝒢𝒢 − 1. This equation completely coincides with the statistics of thermal light given 
by Eq. (S2.35). 



12 

The general case: 
We now consider the general case between thermal and coherent states of light and find the 

average number of photons and the second-order correlation 𝑔𝑔(2)(0) for the amplifier: 
〈𝑛𝑛out〉 = 𝒢𝒢 ⋅ ⟨𝑛𝑛in⟩ + 𝒢𝒢 − 1, (S3.9) 

𝑔𝑔(2)(0) = 2 − � 𝒢𝒢⋅⟨𝑛𝑛in⟩
𝒢𝒢⋅⟨𝑛𝑛in⟩+𝒢𝒢−1

�
2

, (S3.10) 
In the experiment presented in Fig. 3 from the main text, we kept the output power fixed (using an 
attenuator for the output light), while we increased the input number of photons. In the case of 
𝒢𝒢 ≫ 1, we can rewrite 𝑔𝑔(2)(0): 

𝑔𝑔(2)(0) = 2 − � ⟨𝑛𝑛in⟩
⟨𝑛𝑛in⟩+1−𝒢𝒢−1

�
2
≈ 2 − � ⟨𝑛𝑛in⟩

⟨𝑛𝑛in⟩+1
�
2

. (S3.11) 

The 〈𝑛𝑛out〉 and 𝑔𝑔(2)(0) as a function of ⟨𝑛𝑛in⟩ are shown in Fig. S8 and in Fig. 3 of the main text. 
We can also calculate the purity of the final electron density matrix, following its Q-PINEM 

interaction with the amplifier light, as a function of the amplifier gain 𝒢𝒢. For that, we substitute 
the general photonic density matrix of the amplifier output (see Section S3.4 below) into Eq. 
(S2.18). The results of the calculation are depicted in Fig. S9. 

S3.2. Analysis of the amplification curve and optical spectra 
In addition to the Q-PINEM measurement, we reconstruct the statistics of the amplifier output 

using the following two optical methods: 1) Using the optical spectra (Fig. S10A); 2) Using the 
measured amplification curve (Fig. S10D), knowing both the power of the input light and the 
amplification coefficient 𝒢𝒢. Let us focus on the first method. The typical optical spectra are shown 
in Fig. S11: it has some level of background noise, amplified noise, and a coherent peak due to the 
amplified input seed. The amplified noise spectrum has a rectangular shape due to the filter used 
in the experiment.  

To analyze the amplifier statistics from the spectrum, we model the coherent-state input seed 
using a Gaussian spectral shape: 

𝑑𝑑〈𝑛𝑛in(𝜆𝜆)〉
𝑑𝑑𝑑𝑑

= 𝐼𝐼0 𝑒𝑒−
(𝜆𝜆−𝜆𝜆0)2

𝜎𝜎2 ,     (S3.12)
where 𝜆𝜆0 = 1064 nm and 𝜎𝜎 are defined by the bandwidth of the laser. The amplifier output signal 
is the sum of the three components: 1) amplified coherent-state input Eq. (S3.12); 2) amplified 
thermal noise, which is created due to the amplified spontaneous emission (ASE); 3) background 
noise. For 𝒢𝒢 ≫ 1, the output can be expressed as 

𝑑𝑑〈𝑛𝑛out(𝜆𝜆)〉
𝑑𝑑𝑑𝑑

= 𝒢𝒢(𝜔𝜔)𝐼𝐼0 𝑒𝑒−
(𝜆𝜆−𝜆𝜆0)2

𝜎𝜎2 + 𝒢𝒢(𝜔𝜔) ⋅ noise + background noise. 
According to this model, we can extract 𝒢𝒢(𝜔𝜔) (up to the multiplication constant) from examining 
the amplification of the noise relative to the unamplified part of the spectrum. Therefore, the value 
marked as 𝐺𝐺 in Fig. S11 is proportional to the theoretical amplifier gain 𝒢𝒢; we use it to find the 
amplification. Furthermore, the height of the Gaussian peak relative to the amplified noise is 
proportional to the input seed photon number 〈𝑛𝑛in〉, so we could also use this scaling to find the 
amplification. 

By either analyzing the measured amplification curve (option 1) or the optical spectra (option 
2) of the output light, we can estimate the statistical properties of the amplifier output. The results
of this analysis are shown in Fig. S10, where green points show the analysis based on the amplifier 
curve, red points denote the analysis of the optical spectra, and they are both compared with black 
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dots that represent the extracted gain from the electron measurement. The latter is explained in 
Section S4, detailing the method of analyzing the photon statistics based on the electron energy 
spectra resulting from the Q-PINEM interaction. The results from this method agree with the 
photon statistics obtained by the two previous methods (Fig. S10E).  

S3.4.  Density matrix description of the amplifier output in the photon number basis 
In this section, we derive the photon density matrix of the amplifier output in the photon number 

basis. According to Eq. (S3.5), the density matrix of the amplified light is: 
𝜌𝜌ph = ∫𝑑𝑑2𝛽𝛽 1

𝜋𝜋(𝒢𝒢−1) exp �−�𝛽𝛽 − �𝒢𝒢𝛼𝛼�
2

/(𝒢𝒢 − 1)� |𝛽𝛽⟩⟨𝛽𝛽|. (S3.13) 
To convert the density matrix to the photon number basis, we need to solve the following 
integral: 

𝜌𝜌ph(𝑛𝑛, 𝑛𝑛′) = ∫𝑑𝑑2𝛽𝛽 1
𝜋𝜋(𝒢𝒢−1) exp �− �𝛽𝛽−�𝒢𝒢𝛼𝛼�

2

𝒢𝒢−1
� 𝑒𝑒−|𝛽𝛽|2 𝛽𝛽𝑛𝑛

√𝑛𝑛!
𝛽𝛽∗𝑛𝑛

′

√𝑛𝑛′!
. (S3.14) 

This is a two-dimensional Gaussian integral. The integral Eq. (S3.14) can be evaluated explicitly 
as: 

𝜌𝜌ph(𝑛𝑛, 𝑛𝑛′) = 𝛼𝛼∗𝑛𝑛
′−𝑛𝑛

𝒢𝒢
� 1
�𝒢𝒢
�
𝑛𝑛′+𝑛𝑛

∑ √𝑛𝑛!𝑛𝑛′!
(𝑚𝑚+𝑛𝑛′−𝑛𝑛)!

(𝒢𝒢−1)𝑛𝑛−𝑚𝑚

(𝑛𝑛−𝑚𝑚)!
exp�−|𝛼𝛼|2�|𝛼𝛼|2𝑚𝑚

𝑚𝑚!
𝑛𝑛
𝑚𝑚=max{0,𝑛𝑛−𝑛𝑛′} .          (S3.15) 

Eq. (S3.15) gives the entire photon density matrix of the amplified light. We note that, as expected, 
the diagonal 𝜌𝜌ph(𝑛𝑛,𝑛𝑛) = 𝑝𝑝𝑛𝑛 recovers the statistics of Eq. (S3.6). 

S4. Free-electron interaction with amplified light: Q-PINEM theory and fit to experiments 

S4.1 Applying the Q-PINEM theory for the case of amplifier light 
In this section, we revisit derivations from Sections 2 and 3 to explain how our electron–light 

interaction theory applies to the quantum statistics of photons created from the amplifier theory. 
Combining these results, we develop the full theory that we later fit to the experimental 
measurements. According to Eq. (S3.6) and Eq. (S2.32), the electron energy spectra after the 
interaction with amplified light are described by: 

𝑃𝑃𝑘𝑘 = ∑ �𝐽𝐽|𝑘𝑘|�2�𝑔𝑔q�√𝑛𝑛��
2
𝑒𝑒−|𝛼𝛼|2 1

𝒢𝒢
�1 − 1

𝒢𝒢
�
𝑛𝑛
𝐿𝐿𝑛𝑛 �−

|𝛼𝛼|2

𝒢𝒢−1
�𝑛𝑛 , (S4.1) 

where the spectrum depends on two values: |𝛼𝛼| and 𝒢𝒢 = 𝒢𝒢(|𝛼𝛼|2). Eq. (S4.1) generalizes both the 
interaction with coherent-state light and with thermal light. In these limiting cases, the electron 
energy spectra are given by Eq. (S2.34) and Eq. (S2.36), respectively.  

To capture the transition between thermal and coherent states, we recall the thermality 
parameter 𝑟𝑟th ∈ [0,1) that arises from the ratio of the effective number of "thermal photons" to the 
total number of photons (Section S1.3). Thus, we define 𝑟𝑟th as the ratio between the amplifier 
output without seed to the amplifier output with seed; using Eq. (S3.9), we get: 

𝑟𝑟th = 𝒢𝒢−1
𝒢𝒢⋅|𝛼𝛼|2+𝒢𝒢−1

. (S4.2) 
We can calculate the electron energy spectrum as a function of 𝑟𝑟th using Eq. (S4.1) and Eq. (S4.2) 
for a fixed amplifier output power, i.e., a fixed |𝑔𝑔| = �𝑔𝑔𝑞𝑞��𝒢𝒢 ⋅ |𝛼𝛼|2 + 𝒢𝒢 − 1. These electron 
energy spectra are shown in Fig. S2 and are the same as the spectra calculated by the walker theory 
presented in Section S1, using Eq. (S4.2) and Eqs. (S1.7-8). 
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S4.2 Fitting of the experimental data 
In this section, we compare the results obtained in the experiment with the theory. We extract 

the parameters |𝛼𝛼|2 and 𝒢𝒢 by fitting the measured electron energy spectra to Eq. (S4.1). We note 
that the photon statistics can be more generally extracted from the electron energy spectrum 
without employing the special case of the amplifier output. This procedure is described in Ref. 
(23). 

Consider the experimental electron energy spectra in Fig. S12A. We want to compare it to the 
theoretical prediction of Fig. S12B, calculated according to Eq. (S4.1). To do this, we need to 
consider the fact that the initial electron is not monoenergetic and that there is an interaction 
between the free electron and the nanostructure, even in the absence of light. This interaction is 
due to the continuum of modes into which the electron emits spontaneously – which is exactly the 
effect of electron energy loss spectroscopy (EELS). To take this phenomenon into account 
empirically, we perform EELS measurements on the nanostructure in the absence of incident light 
(Fig. S12C). We then use the measured EELS (Fig. S12C) to convolve the results of our single-
mode Q-PINEM theory.  

Altogether, to compare the theory Fig. S12B with the experimental Fig. S12A, we convolve the 
theoretical peaks with the experimentally obtained zero-loss peak (Fig. S12C), obtaining the final 
theoretical spectrum, as in Fig. S12D. To fit the model to the experimental data, we use two fitting 
parameters from the theory: 𝑎𝑎 = 𝜂𝜂�𝑔𝑔q�

2
𝒢𝒢 and 𝑏𝑏 = 𝜂𝜂�𝑔𝑔q�

2
𝒢𝒢〈𝑛𝑛〉, where 𝜂𝜂 is the coupling efficiency

of the light with the silicon-photonic nanostructure, i.e., the ratio between the number of photons 
that are coupled to the nanostructure and the number of photons emitted from the amplifier. In this 
manner, we fit the theory and experimental results in all the figures of the main text and extract 
the corresponding fit parameter values of 𝜂𝜂�𝑔𝑔q�

2
𝒢𝒢 and 𝜂𝜂�𝑔𝑔q�

2
𝒢𝒢〈𝑛𝑛〉 for the different experiments.

Thus, for example, we can reconstruct the photon statistics in Fig. 3 from the main text. Moreover, 
we can calculate the strength of the quantum coupling constant �𝜂𝜂�𝑔𝑔q� ≈ 0.016, extracting it from 
the fit parameter 𝑎𝑎 = 𝜂𝜂�𝑔𝑔q�

2
𝒢𝒢, by using the gain 𝒢𝒢 obtained from the amplification curve described

in Section S3. 
Fig. S13 presents the comparison between the experimental and the fitted theoretical spectra 

for different strengths of the electric field, shown for the limits of coherent and thermal states of 
light. 

S4.3 The asymmetry in the measured electron energy spectra 
Figs. 1C,D and Figs. 2A,B,D from the main text show an intrinsic asymmetry in the electron 

energy spectra. Such asymmetry arises from inelastic scattering of the electron by the structure, 
including spontaneous emission of a range of optical excitations (usually without phase-matching) 
(90, 91). This behavior contrasts with the symmetry of the rest of the features in the electron 
energy spectra, which all arise from stimulated emission and absorption. In principle, both 
spontaneous and stimulated effects can be fully captured by the QPINEM theory when applied to 
a continuum of optical modes (66, 92). However, the single-mode QPINEM theory that we 
employ (Eqs. (2-4) from the main text and Section S2) does not capture the asymmetry. Thus, 
we apply an empirical approach to capture the asymmetry of inelastic scattering: we measure 
the electron energy loss spectrum (EELS) (92) in the interaction with no external light 
illumination (Fig. S13), and then 
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we convolve it with the result of the QPINEM theory, showing good agreement with the 
experimental data.  

Despite the free-electron interaction involving a continuum of optical modes, as seen by the 
asymmetric EELS (Fig. S13), the light excitation only couples to a single mode (the light 
bandwidth is narrow enough for the single-mode approximation being accurate). Consequently, 
the free-electron–light interaction acts as a probe of that single mode rather than of the continuum. 
Importantly, even when the light excitation is broadband and couples to a wider continuum of 
modes, quasi-phase-matching could enable selective probing of a single mode by tuning the 
electron velocity. 

S4.4 Mechanisms other than photon statistics that alter the electron energy spectrum 
We verify that our observed quantum-to-classical transition does not arise from the lack of 

spatial/temporal optical coherence. The spectral bandwidth of thermal light in our experiment (4 
nm) depicts a longer temporal coherence (900 fs) than the electron–light interaction duration (410 
fs). The transverse coherence of light is similarly longer than the electron–light interaction length 
(84 μm), as it is emitted from a single-mode fiber (6 μm core). Thus, optical coherence is fully 
maintained even for thermal light. To further strengthen this conclusion, we developed the theory 
for free-electron interaction with partially coherent light (Section S6). We find that partial optical 
coherence reduces the efficiency of quasi-phase-matching in a manner that no longer matches with 
our measurement due to the diminished interaction strength (Fig. S16 below in Section S6). In 
contrast, we find equal interaction strengths (variance in energy) for both coherent states and 
thermal states of the same intensity (e.g., white circles in Fig. 1C,D from the main text), implying 
the same level of optical coherence in both cases. We conclude that the differences in electron 
energy spectra for different states of light arise entirely from differences in photon statistics, 
leading to quantum decoherence in the energy domain (which can be equally understood in the 
language of collapse or entanglement). 

It is also valuable to compare our measurements of free-electron–quantum-light interactions to 
previous work in PINEM. Fig. 1C from the main text exactly corresponds to the PINEM theory 
(17,18), showing quantum walk (also called Rabi oscillations in some works) first observed in Ref. 
(14). The difference is that our experiment observes this effect using CW light rather than a pulsed 
laser, which is orders of magnitude more intense. Fig. 1D from the main text exactly corresponds 
to the Q-PINEM theory with thermal light statistics, showing classical random walk, which has a 
Gaussian distribution. Certain PINEM experiments with coherent laser pulses (e.g., Ref. (13)) 
showed Gaussian-like distributions and may be mistakenly perceived as similar: Importantly, in 
these experiments, the Gaussian-like electron energy distributions arose from the inhomogeneous 
temporal field profile along the interaction with the electron (the electron pulse duration was longer 
than the laser pulse duration), and from the inhomogeneous spatial profile inside the electron beam 
diameter. In contrast, CW light maintains an average intensity ⟨𝐼𝐼(𝑡𝑡)⟩ = ⟨𝐼𝐼⟩ that does not depend 
on time and thus remains homogeneous along the interaction with the electron. Moreover, our 
electron beam diameter is small enough (Materials and methods) to eliminate spatial 
inhomogeneities. Hence, the effects we observe here are purely due to photon statistics. 
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S5. The phase-matching condition and its analysis 
The requirement for a strong interaction between free electrons and extended light fields is 

matching the electron velocity with the light's phase velocity. This requirement is called the phase-
matching condition in electron–light interactions. The phase-matching condition is well-known in 
classical electrodynamics and forms the basis of efficient dielectric laser accelerators (DLAs) (8, 
10). This phase-matching condition was recently shown in a PINEM interaction, where the 
electron is a quantum wavefunction, and the light is a coherent state (40). In this section, we 
describe how the phase-matching condition arises in the PINEM theory and why it is directly 
applicable in Q-PINEM (40, 92, 93) for any form of quantum light.  

The subsections below present how the phase-matching condition arises straightforwardly from 
the PINEM theory and then present its generalization to a quasi-phase-matching condition, which 
appears in our experiment. We use rigorous numerical simulations of the field inside the 
nanostructure to fully describe the interaction and compare it with the model arising from PINEM 
theory. 

S5.1. The emergence of phase-matching from the PINEM theory 
To find the phase-matching condition in the PINEM theory, let us calculate the strength of the 

PINEM interaction (see Ref. (40)): 
|𝑔𝑔| = 𝑒𝑒

ℏ𝜔𝜔
�∫𝐸𝐸𝑧𝑧(𝑧𝑧)𝑒𝑒−𝑖𝑖

𝜔𝜔
𝑣𝑣𝑧𝑧𝑑𝑑𝑑𝑑�. (S5.1) 

The field 𝐸𝐸𝑧𝑧(𝑧𝑧) in the structure is given by: 
𝐸𝐸𝑧𝑧(𝑧𝑧) = 𝐸𝐸0𝑒𝑒𝑖𝑖𝑘𝑘𝑧𝑧𝑧𝑧 ,    (S5.2) 

where 𝑘𝑘𝑧𝑧 = 𝑘𝑘0𝑛𝑛 cos 𝜃𝜃 is the projection of the wavevector on the 𝑧𝑧 axis, 𝑘𝑘0 = 2𝜋𝜋/𝜆𝜆0 is the 
wavenumber of the mode, and 𝜆𝜆0 is the wavelength. Substituting Eq. (S5.2) into Eq. (S5.1), we 
get: 

|𝑔𝑔| = 𝑒𝑒|𝐸𝐸0|
ℏ𝜔𝜔

�∫ exp(𝑖𝑖𝑘𝑘0(𝑛𝑛 cos𝜃𝜃 − 𝛽𝛽−1)𝑧𝑧)𝑑𝑑𝑑𝑑+𝐿𝐿/2
−𝐿𝐿/2 �, (S5.3) 

where 𝑛𝑛 is an effective refractive index, 𝜃𝜃 is the angle between the electron velocity (i.e., the z-
axis) and the wavevector of the light, 𝛽𝛽 = 𝑣𝑣/𝑐𝑐 is the normalized velocity of the free electron, and 
𝐿𝐿 is an effective interaction length. 

The integral in Eq. (S5.3) yields: 
|𝑔𝑔| = 𝑒𝑒|𝐸𝐸0|

ℏ𝜔𝜔
𝐿𝐿 �sinc �𝑘𝑘0𝐿𝐿

2
(𝑛𝑛 cos 𝜃𝜃 − 𝛽𝛽−1)��, (S.5.4) 

The phase-matching condition then reads: 
𝑛𝑛 cos 𝜃𝜃 − 𝛽𝛽−1 = 0, (S5.5) 

and the phase-matched value of |𝑔𝑔| equals to: 
|𝑔𝑔|(max) = 𝑒𝑒|𝐸𝐸0|

ℏ𝜔𝜔
𝐿𝐿. (S5.6) 

S5.2. Quasi-phase-matching in periodic structures: the inverse Smith–Purcell effect 
The previous subsection can be understood as an implementation of the inverse Cherenkov 

effect, as shown in Ref. (40). Our experiment can be explained in an analogous manner as an 
implementation of the inverse Smith–Purcell effect.  

In a periodic structure, the condition for a strong interaction of a free electron with light is called 
the quasi-phase-matching condition (in analogy to periodic-poled crystals in nonlinear optics). As 
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with other forms of free-electron–light phase-matching, this condition guarantees that the electron 
velocity is equal to the phase velocity of the optical mode of the light in the structure. Hence, the 
interaction strength is sensitive to the electron velocity and allows us to selectively couple the 
electron to (approximately) a single mode of light. Moreover, the quasi-phase-matching condition 
not only enhances the interaction with a chosen single mode but also suppresses the interaction 
with the other light modes. This way, we could choose a specific light wavelength by tuning the 
velocity of the electron (Section S5.4).  

In the presence of a periodic structure with periodicity Λ, the field in Eq. (S5.1) is: 
𝐸𝐸𝑧𝑧(𝑧𝑧) = ∑ 𝐸𝐸𝑚𝑚𝑒𝑒

𝑖𝑖�𝑘𝑘0 cos𝜃𝜃+
2𝜋𝜋
Λ 𝑚𝑚�𝑧𝑧

𝑚𝑚 , (S5.7) 
where 𝑚𝑚 is the Fourier (diffraction) order of the mode with amplitude 𝐸𝐸𝑚𝑚. Then, the interaction 
strength becomes 

|𝑔𝑔| = 𝑒𝑒
ℏ𝜔𝜔
�∑ 𝐸𝐸𝑚𝑚𝑚𝑚 ∫ exp �𝑖𝑖 �𝑘𝑘0 cos 𝜃𝜃 + 2𝜋𝜋

Λ
𝑚𝑚 − 𝜔𝜔

𝑣𝑣
� 𝑧𝑧�𝑑𝑑𝑑𝑑

+𝐿𝐿2
−𝐿𝐿2

�. (S5.8) 

Usually, only one diffraction order 𝑚𝑚  is phase matched, hence the coupling is simplified to 
|𝑔𝑔| = 𝑒𝑒|𝐸𝐸𝑚𝑚|𝐿𝐿

ℏ𝜔𝜔
�sinc𝜋𝜋𝜋𝜋 � 1

𝜆𝜆0
cos 𝜃𝜃 + 1

Λ
𝑚𝑚 − 1

𝜆𝜆0𝛽𝛽
��, (S5.9) 

where we substituted 𝜆𝜆0 = 2𝜋𝜋/𝑘𝑘0. Then, the phase-matching condition becomes 
𝜆𝜆0 = Λ

𝑚𝑚
(𝛽𝛽−1 − cos 𝜃𝜃), (S5.10) 

which is exactly the Smith-Purcell dispersion relation (61), describing the spontaneous emission 
of photons by electrons near a periodic structure. Therefore, our experiment implements the 
inverse Smith–Purcell effect, which was described theoretically with electron wavefunctions (62, 
63), but so far never showed with CW light nor with non-Poissonian driving light. 

S5.3. The analysis of experimental data 
In this part of the section, we discuss the experimental verification of the phase-matching 

condition. Using the method suggested in Section S4 for each spectrum, we extract the coupling 
strength |𝑔𝑔| as a function of electron velocity. To analyze the phase-matching, we compared these 
experimental measurements with Eq. (S5.9). We substitute 𝜆𝜆0 = 1064 nm, Λ = 733 nm, 𝑚𝑚 = 1, 
and 𝜃𝜃 = 90°. Using the measured electron energy spectra as a function of electron velocity for 
interactions with coherent-state light (Fig. 5A from the main text, also Fig. S14 below), we fit the 
theory to the experimental results and find the effective interaction length with the structure: 𝐿𝐿 ≈
56 μm.  

The rigorous numerical simulation of the electromagnetic fields inside the structure gives a 
good agreement with the simple model described by Eq. (S5.9). Although the experimental results 
show an asymmetric behavior that partially deviates from the theory for high electron acceleration, 
they generally follow the same trend and have the same quasi-phase-matching condition. A more 
advanced theory could consider the transverse Gaussian profile and defects of the structure. Such 
theory can potentially provide a more precise fit capturing the asymmetric behavior of the data and 
the deviation from the theory for high electron velocities. 

To summarize this section, we note that the idea of phase-matching between the electron 
wavefunction and the light wave can lead to strong coupling between free electrons and light. The 
phase-matching is sensitive to the phase velocity of the mode of light and to the electron velocity, 
and thus, it allows us to couple exactly to a single mode of light. The phase-matching condition 
not only enhances the interaction with a chosen single mode but also diminishes the interaction 
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with all the other light modes. In this manner, we can selectively couple to a selected light mode 
by tuning the velocity of the electron. The practical resolution by which the phase-matching 
condition enables to isolate a single mode is determined by the extent and duration of the 
interaction (in our case, it is 84 µm, which limits our wavelength resolution to about 8 nm). 

S5.4. Detection of quantum light by using free electrons: prospects for extremely high resolution 
in both time and frequency 

The quasi-phase-matching shown in Fig. S14 and also in Fig. 5 from the main text could provide 
a useful capability for quantum-optical detection: resolving the quantum photon statistics of an 
individual mode (single frequency) out of a multi-mode (or a spectrally broad) pulse of quantum 
light. By scanning over the electron velocity, as in Fig. 5 from the main text, we can select a 
particular mode with which the electron satisfies quasi-phase-matching. Then the interaction could 
potentially isolate the photon statistics of that mode. The spectral resolution improves for quasi-
phase-matching of longer extent and duration (see Fig. S15). The maximum wavelength range that 
can be probed depends on the bandwidth of the nanostructure’s spectral response, which is 8 nm 
in our case (Fig. 5D inset from the main text) and can be significantly wider (as already shown 
in previous work, e.g., Ref. (94)). 

Another advantage of free-electron-based quantum-optical detection is the prospects of 
reaching time resolutions only limited by the electron pulse duration (23); currently, tens-hundreds 
of fs. These time resolutions are already better than all existing mechanisms of quantum 
light detection, which are limited by electronic timescales (95). Future work can improve the 
time resolution to attosecond timescales using attosecond electron combs (19-21, 83). Our 
free-electron-based approach can also be attractive for wide-bandwidth quantum-optical detection 
(96, 97), and potentially lift the bandwidth limitation from applications such as continuous-
variable quantum information processing (96). As with all other components and detectors in 
quantum optics, the future success of our detection technique depends on high efficiency 
(low loss) manipulation of light; specifically, efficient coupling into the nanostructure that 
performs the electron–light interaction. High-efficiency coupling of light into silicon-photonic 
nanostructures is a topic of intense investigation and is already available as on-chip technology 
(72). 

S6. The role of optical coherence in Q-PINEM interactions 
In this section, we consider the model of interaction of free electrons with partially coherent 

light and show the effect of the partial optical coherence on the electron energy spectra. This 
analysis shows that partial optical coherence cannot explain our experimental data, and it must be 
due to the higher orders of coherence – i.e., the quantum photon statistics. We emphasize the 
distinct differences between effects of partial optical coherence and the effects of quantum 
statistics observed in our experiments (due to super-Poissonian and thermal light statistics). 

We consider classical coherent light. According to Eq. (S5.1), the coupling between light and 
free electrons equals to: 

𝑔𝑔 = |𝑔𝑔|𝑒𝑒𝑖𝑖𝑖𝑖 = 𝑒𝑒
ℏ𝜔𝜔 ∫𝐸𝐸𝑧𝑧(𝑧𝑧)𝑒𝑒−𝑖𝑖

𝜔𝜔
𝑣𝑣𝑧𝑧𝑑𝑑𝑑𝑑, (S6.1) 

where 𝐸𝐸𝑧𝑧(𝑧𝑧) is the classical electric field along the 𝑧𝑧 axis. To model optically incoherent light, we 
consider consecutive interactions with 𝑁𝑁 coherent fields, each with coherence length 𝑙𝑙𝑐𝑐 = 𝐿𝐿/𝑁𝑁 (𝐿𝐿 
is the total interaction length) and a constant phase 𝜙𝜙𝑖𝑖 over this interval, where each phase is 
uniformly distributed in [0,2𝜋𝜋]. This simple model gives the following coupling strength: 
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𝑔𝑔 = |𝑔𝑔|
𝑁𝑁
∑ 𝑒𝑒𝑖𝑖𝜙𝜙𝑖𝑖𝑁𝑁
𝑖𝑖=1 , (S6.2) 

The results of the numerical calculations of the electron energy spectra for different 𝑁𝑁 values (i.e., 
different optical coherence lengths 𝑙𝑙𝑐𝑐, decreasing for larger 𝑁𝑁) are displayed in Fig. S16. 

We find that for partial optical coherence of light, i.e., shorter coherence length 𝑙𝑙𝑐𝑐, the energy 
spread of the electron after the interaction decreases. In the language of quantum walk, this is 
equivalent  to a quantum walk in a temporally disordered medium, resulting in the diffusion scaling 
linear but with a smaller slope, until eventual localization emerges (no energy spread). We can use 
the slope of the energy spread as the function of |𝑔𝑔| to identify the degree of optical decoherence. 
When applying this analysis to our experiment, we find that our data can be explained by fully 
coherent light, with no need for corrections due to partially incoherent light. 

Importantly, this section shows that one cannot explain free-electron interactions with thermal 
light using partial optical coherence – these are two completely separated effects (one associated 
with phase fluctuations in the light, and the other with photon statistics – or intensity fluctuations). 
In our experiment, the thermal state had full optical coherence in both time and space. In time, the 
temporal coherence can be estimated from the bandwidth to be at least 900 fs, which is larger than 
the interaction duration with the electron, 410 fs. In space, the spatial coherence is longer than the 
structure length if 84 μm, since the light is emitted from a single mode fiber, the same one used 
for the coherent-state light. 

S7.  The interaction of classical point electrons with quantum light 
In this section, we derive the interaction between a point free electron and quantum light for the 

case of coherent and thermal states of light. Here we should note that we use a rather exotic 
assumption: while we treat an electron as a point particle (completely ignoring its wave nature), 
we consider light as a quantum object. With this purpose, we calculate the electron energy 
spectrum for interaction with a classical electromagnetic field (i.e., for coherent states of light) and 
for the interaction with thermal light using the Glauber 𝑃𝑃-function. We use this derivation to 
compare with our fully quantum analysis (main text Fig. 3), showing that the quantum theory is 
necessary in all cases. 

Coherent-state light can be described by a classical electromagnetic field 𝐸𝐸𝑧𝑧(𝑡𝑡). Thus, the 
interaction of the coherent-state light with an electron can be described by the following equation 
of motion: 

𝑚𝑚𝑒𝑒
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= −𝑒𝑒 ⋅ 𝐸𝐸𝑧𝑧(𝑡𝑡),    (S7.1) 
where 𝑚𝑚𝑒𝑒 is the mass of the electron, 𝑒𝑒 is the elementary charge, and 𝑣𝑣 is the electron velocity. 
The magnetic term in Eq. (S7.1) is negligible in our conditions. We assume that the initial electron 
position is uniformly distributed over a single optical cycle of the electromagnetic field. Within 
these assumptions, it can be shown that the probability distribution over the energy of the electron 
after the interaction is (detailed derivation can be found in Ref. (40)):  

𝑃𝑃coherent(Δ𝐸𝐸,𝛼𝛼) = 1
𝜋𝜋�4|𝑔𝑔|2(ℏ𝜔𝜔)2−(Δ𝐸𝐸)2

, (S7.2) 

where Δ𝐸𝐸 is the electron energy shift, |𝑔𝑔|2 = �𝑔𝑔q�
2
⋅ 〈𝑛𝑛〉 = �𝑔𝑔q�

2|𝛼𝛼|2 is the number of photons in
the coherent-state light, and 𝜔𝜔 is the frequency of the light. The formula in Eq. (S7.2) exactly 
corresponds to the acceleration in the classical theory of DLA. Fig. S17 (left) compares the 
classical theory with the quantum (PINEM) theory, showing that they do not match and that only 
the quantum theory matches with the experimental data.  
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We now calculate the interaction of a classical point electron with thermal light. The density 
matrix of thermal light according to Ref. (4) can be described by the Glauber function: 

𝜌𝜌thermal = ∫𝑃𝑃(𝛼𝛼)|𝛼𝛼⟩⟨𝛼𝛼|𝑑𝑑2𝛼𝛼,  (S7.3) 
where |𝛼𝛼⟩ is the coherent state of light, 𝑃𝑃(𝛼𝛼) = 1

𝜋𝜋〈𝑛𝑛〉
𝑒𝑒−|𝛼𝛼|2/〈𝑛𝑛〉 is the Glauber function of the thermal 

light, and 〈𝑛𝑛〉 is the average number of photons. The resulting probability distribution of the 
electron energy shift equals to: 

𝑃𝑃thermal(Δ𝐸𝐸) = ∫𝑃𝑃coherent(Δ𝐸𝐸,𝛼𝛼) ⋅ 𝑃𝑃(𝛼𝛼) 𝑑𝑑2𝛼𝛼.   (S7.4) 
Substituting Eq. (S7.3) into Eq. (S7.4), we get: 

𝑃𝑃thermal(Δ𝐸𝐸) = 1
2√𝜋𝜋|𝑔𝑔|ℏ𝜔𝜔

𝑒𝑒−�
Δ𝐸𝐸

2|𝑔𝑔|ℏ𝜔𝜔�
2

, (S7.5) 

where |𝑔𝑔|2 = �𝑔𝑔q�
2
⋅ 〈𝑛𝑛〉. Fig. S17 (right) compares the classical theory and the quantum (Q-

PINEM) theory, showing that they do not match in the thermal case either.  
To summarize, this section presents an attempt at an alternative theory to explain the 

measurements. This alternative theory does not match with our data, which helps eliminate an 
explanation of our experiment as a "collapse" or "measurement" of the electron in space.  If the 
thermal light could "measure" ("collapse") the position of the electron, i.e., localize the electron in 
space, then such a situation would correspond to the classical theory that we consider in this 
section.  Instead, we find that the electron "collapse" only occurs in the energy domain and that 
such a quantum theory is the one that correctly matches the measured data. Therefore, our 
experiment demonstrates that we work in a quantum regime in which the electron wavefunction 
has a long coherence length (much larger than the wavelength of the light) and a long coherence 
duration (much longer than the optical cycle). 



21 

Fig. S1. Silicon-photonic nanostructures for efficient electron–light coupling: based on 
dielectric laser accelerators (DLAs). (A) Schematic illustration of the two-dimensional 
simulation cell used for inverse design. The nanostructure was optimized over a 5-µm-wide design 
region (grey) with a 250-nm-broad vacuum channel in the center. Periodic boundaries (green) were 
applied in the longitudinal direction, and perfectly matched layers (orange) were defined at the 
remaining boundaries. A transverse-magnetic plane wave (red) was excited on one side, and the 
resulting acceleration gradient, measured in the center of the channel, served as the objective 
function. (B) Electric field components 𝐸𝐸𝑧𝑧 and 𝐸𝐸𝑥𝑥 normalized by the incoming field amplitude. 
(C) SEM picture showing our DLA-type nanostructure on a 30-µm-high mesa. 
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Fig. S2. Comparison between quantum-to-random "walker": theory and Q-PINEM theory, 
showing the equivalence of the two models. The electron energy spectra as a function of the 
thermality coefficient 𝒓𝒓𝐭𝐭𝐭𝐭, calculated for both theories and showing the exact match between the 
results predicted by these different theories. 
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Fig. S3. Electron quantum state following a free-electron–light interaction. Left column: 
Initial photon density matrix (its absolute values) in the number basis. Middle column: Final 
electron density matrix (its absolute values) in energy space. Right column: Electron energy 
spectrum. For all examples, the average number of photons is 𝒏𝒏� = 𝟏𝟏𝟏𝟏𝟏𝟏, the quantum coupling 
constant is 𝒈𝒈𝐪𝐪 = 𝟎𝟎.𝟏𝟏, and the electron initial energy uncertainty is 𝜟𝜟𝜟𝜟 = 𝟎𝟎.𝟏𝟏ℏ𝝎𝝎. (A)-(E): Q-
PINEM interaction with an initial photonic state from the amplifier output, ranging between 
coherent-state light to thermal light, for a chosen gain of (A) 𝑮𝑮 = 𝟏𝟏, (B) 𝑮𝑮 = 𝟑𝟑.𝟑𝟑𝟑𝟑, (C) 𝑮𝑮 =
𝟏𝟏𝟏𝟏.𝟑𝟑𝟑𝟑, (D) 𝑮𝑮 = 𝟑𝟑𝟑𝟑.𝟐𝟐𝟐𝟐 and (E) 𝑮𝑮 = 𝟏𝟏𝟏𝟏𝟏𝟏. The photonic quantum state necessary for this 
calculation is developed in Section S3.5. 
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Fig. S4. Purity of the electron's final state following an interaction with different states of light, as 
a function of the interaction strength |𝒈𝒈| ≡ �𝒈𝒈𝐪𝐪�√𝒏𝒏. 
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Fig. S5. Correlations between the light and the free electron showing their entanglement. The 
correlations are plotted for the interaction with coherent and with thermal light. We see that the 
thermal state creates stronger correlations with the electron than the coherent state. The curves are 
calculated for �𝒈𝒈𝐪𝐪� = 𝟎𝟎.𝟏𝟏, using Eq. (S2.30). 
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Fig. S6. Electron energy spectra for the interactions with coherent and thermal states of light, 
calculated according to Eq. (S2.34) and Eq. (S2.36). 
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Fig. S7. Quantum weak measurement vs. projective measurement. The fidelity quantifies how 
much the photonic state changes due to the electron interaction. The bars show the fidelity of the 
photonic state (the measured system) following the detection of the electron (the measuring 
pointer) at the 𝒌𝒌-th energy peak, for a coherent state (red), thermal state (orange), and a Fock state 
(blue). All curves are calculated with a mean photon number of ⟨𝒏𝒏⟩ = 𝟏𝟏𝟏𝟏𝟏𝟏 and 𝒈𝒈𝐪𝐪 = 𝟎𝟎.𝟏𝟏.  
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Fig. S8. Transition between coherent and thermal state for the amplifier output as a function of the 
input number of photons ⟨𝒏𝒏𝐢𝐢𝐢𝐢⟩. The output power was kept fixed using an attenuator. 
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Fig. S9. Purity of the electron quantum state following a Q-PINEM interaction. The 
interaction is simulated with an initial photonic state from the amplifier output, ranging from 
coherent light state (𝐺𝐺 = 0 𝑑𝑑𝑑𝑑) to thermal light state (𝐺𝐺 = 40 𝑑𝑑𝑑𝑑). The average number of photons 
is 〈𝑛𝑛〉 = 100, the quantum coupling constant is 𝑔𝑔q = 0.1, and the initial electron energy 
uncertainty 𝛥𝛥𝛥𝛥 = 0.1ℏ𝜔𝜔. 
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Fig. S10. Quantum optical properties of the amplifier light. We compare two methods of 
analysis of the quantum photon statistics of the amplifier output: (A) The optical spectra, from 
which we extract (B) the photon statistics. (C) The photon statistics can also be extracted from the 
measured electron energy spectra following the free-electron–light interaction. We extract the gain 
G of the amplifier from both experimental measurements and compare with (D) a direct 
measurement of the amplifier gain from input-output measurements. (E) The comparison of the 
three methods shows good agreement and enables us to extract the effective interaction constant 
𝑔𝑔q up to the coupling efficiency of light into the structure.  
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Fig. S11. Experimental optical spectrum of the amplifier output and its fit. The background 
noise is at -75 dB, the amplified noise is at -60 dB, and the amplified coherent input peak is at -15 
dB. 
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Fig. S12. Fitting theory with experiment. (A) Experimental electron energy spectrum. (B) The 
electron–light interaction theory (single-mode) according to Eq. (S4.1). (C) The experimental 
energy loss spectrum without an external light illumination. (D) Convolution of (B) and (C) 
provides a very good match with the experimental data. 
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Fig. S13. Electron energy spectra for interactions with coherent and thermal states of light 
for selected electric field magnitudes. Colored curves show the theory, while the dashed black 
curves show the experimental measurements. The top panels show the electron energy spectrum 
without any external light illumination, i.e., the electron energy loss during its motion through the 
structure. The energy loss is due to spontaneous emission into various excitations as in 
conventional electron microscopy (combination of phonons, plasmons, Cherenkov radiation, and 
Smith-Purcell radiation). We use the resulting energy loss spectrum as the basic energy peak to be 
convolved with the discrete prediction of the Q-PINEM theory (or equivalently, the walker theory). 
Note that the thermal light achieves the same interaction strength as coherent state of light for the 
same illumination power (same field amplitude) because it maintains phase-matching in the same 
manner as coherent state of light. The differences in the electron energy features are due to the 
thermal light becoming entangled with the electron in the energy domain. 
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Fig. S14. Comparison between the experiment and theoretical prediction of the phase-
matching condition. The figure shows the coupling strength |𝑔𝑔|2 as a function of electron 
acceleration, calculated according to Eq. (S5.9) (black curve) and extracted from the experiment 
(red dots). 

electron acceleration, [keV]
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Fig. S15. Phase-matching with a longer structure. Simulation of 5-times-longer structure, 420 
µm, demonstrating the concept of wavelength-selective interaction: controlling the acceleration 
voltage to enable probing the quantum statistics of photons at the desired frequency. This 
capability is especially attractive for quantum light of wide bandwidth or ultrafast pulses of 
quantum light. 
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Fig. S16. The interaction of an electron with optically incoherent light. (A) Electron energy 
spectrum as a function of electric field for thermal light. (B) Experimental values of |𝑔𝑔| (which is 
proportional to the electron energy spread after the interaction) as a function of the electric field. 
It shows that the experimental result obtained for the thermal and coherent light states have the 
same slope. (C) Electron energy spectra as a function of electric field magnitude for coherent-state 
light and for different degrees of optical coherence (i.e., optical coherence lengths 𝑙𝑙𝑐𝑐). The energy 
spread decreases for shorter optical coherence lengths. The experimental results in (B) demonstrate 
that we have optically coherent light in both thermal and coherent interactions since the thermal 
and coherent light states have the same energy spread. In the simulations of this figure, the effective 
interaction length 𝐿𝐿 is assumed to be 84 µm long. 
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Fig. S17. Comparison between the quantum and classical theory of the PINEM and Q-PINEM 
interaction. The figure shows the quantum and classical descriptions of the interaction with coherent (left) 
state and thermal (right) state, respectively. 
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