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Université de Paris, F-75005 Paris, France

5Institut für Kernphysik (IKP-3), Institute for Advanced Simulation (IAS-4) and Jülich Center for Hadron Physics,
Jülich Research Centre, 52425 Jülich, Germany

(Received 12 October 2021; revised 9 February 2022; accepted 4 March 2022; published 19 April 2022)

Criticality is deeply related to optimal computational capacity. The lack of a renormalized theory of
critical brain dynamics, however, so far limits insights into this form of biological information processing to
mean-field results. These methods neglect a key feature of critical systems: the interaction between degrees
of freedom across all length scales, required for complex nonlinear computation. We present a renormalized
theory of a prototypical neural field theory, the stochastic Wilson-Cowan equation. We compute the flow of
couplings, which parametrize interactions on increasing length scales. Despite similarities with the Kardar-
Parisi-Zhang model, the theory is of a Gell-Mann–Low type, the archetypal form of a renormalizable
quantum field theory. Here, nonlinear couplings vanish, flowing towards the Gaussian fixed point, but
logarithmically slowly, thus remaining effective on most scales. We show this critical structure of
interactions to implement a desirable trade-off between linearity, optimal for information storage, and
nonlinearity, required for computation.
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Criticality and information processing are deeply related:
Statistical descriptions of the hardest-to-solve combinato-
rial optimization problems, for example, are right at the
edge of a phase transition [1,2]. Also brain activity shows
criticality [3,4], which may optimize the network’s com-
putational properties [5].
A multitude of critical processes could lie behind critical

brain dynamics. Thanks to the universality paradigm of
statistical physics, however, their macroscopic behavior is
organized into few classes, characterized only by the
structure of effective, macroscopic interactions, rather than
microscopic details [6,7]. Identifying the universality
classes implemented by neural networks and finding their
distinctive features is key to understanding if and how the
brain exploits criticality to perform computation.
Theoretical analysis of critical brain dynamics is, how-

ever, so far restricted to mean-field methods. These partly
explain why memory, dynamic range, and signal separation
are optimal at a critical point [8–10]. Still, a fundamental
aspect of critical computation is inaccessible to these

methods: the nonlinear interaction between degrees of free-
dom across all length scales. By approximating fluctuations
as Gaussian, mean-field theory can study only the linear
response of individual modes to stimuli. But a single,
uncoupled mode can solve only simple computational tasks.
In fact, this approximation only holds if nonlinear inter-
actions, albeit necessary for computation, are irrelevant on
macroscopic scales. Thus, mean-field criticality is a special
case, in fact the simplest yet most restricted kind of criticality
the brain could possibly implement. Uncovering different
kinds of criticality requires more sophisticated methods.
In this Letter we analyze criticality in the stochastic

Wilson-Cowan rate model, a prototypical model of brain
dynamics [11–13]. We use the nonequilibrium Wilsonian
renormalization group to go beyond mean-field analysis
[6,7]. This technique tracks the flow of effective nonlinear
couplings as one describes the system on gradually increasing
length scales. This exposes the type of criticality featured by
the system and its relevance for computation. The model is
studied under a continuous stream of external inputs, as
typical for interconnected brain areas [14,15]. While critical
activity in networks driven by sparse inputs is well described
by branching processes [3,16] belonging to the universality
class of mean-field directed percolation [17], it is still unclear
whether constantly driven brain networks are able to support
criticality at all [18].
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We find the Wilson-Cowan model can indeed be critical
in this regime. At d ¼ 2 spatial dimensions, corresponding
to the planar organization of cortical networks, mean-field
theory loses validity. In fact, we discover criticality of the
Gell-Mann–Low kind [19] ([20], Sec. V). Nonlinear
couplings here decrease logarithmically slowly, thus
remaining effective on practically all length scales. This
property implements a desirable balance between a linear
behavior and a nonlinear one; the model optimally remem-
bers signals presented in the past, due to its nearly linear
dynamics, and at the same time can perform nonlinear
classification.
Focusing on the key ingredients of neural networks, that

are nonlinear dynamics of their constituents, noisy drive,
and spatially localized nonlinear coupling, we consider a
neural field following the Wilson-Cowan [11–13] equation

τ
dh
dt

¼ −lðhÞ þ w � fðhÞ þ ffiffiffi

τ
p

I; ð1Þ

where hðx; tÞ is a neural activity field on the space x ∈ Rd

that evolves in time t on the characteristic timescale τ. The
function l describes intrinsic local dynamics, and f is a
nonlinear gain function. The connectivity kernel wðx − x0Þ
weighs the input from the neural state at position x0 to that at
position x, and � is the spatial convolution. Following a
common approach [21,22], the connectivity is isotropic
wðxÞ ¼ wðkxkÞ and consists of the sum of two Gaussians
w�ð2πσ2�Þ−d=2expð−kxk2=2σ2�Þ, with signðw�Þ¼�1, rep-
resenting excitatory and inhibitory connections. External
input from remote brain areas driving the local activity is, for
simplicity, modeled as Gaussian white noise with statistics
hIðx; tÞi ¼ μ and hIðx; tÞIðx0; t0Þi ¼ Dδðx − x0Þδðt − t0Þ.

A microscopic length a characterizes the spatial resolution
of the model, thus Eq. (1) is defined on a latticewithNd sites
and spacing a, eventually taking the limit N → ∞.
Equivalently, momenta are restricted to jkj < Λ ≔ π=a.
We are interested in the spatial dimension d ¼ 2, on which
the model is traditionally defined [12]. Thus, space points
effectively represent cortical columns, connected along the
direction of the cortical surface [23]. An isotropic space-
dependence of the connectivity is also justified functionally
by a topographical mapping of receptive fields; e.g., the
retinotopic mapping onto primary visual cortex [24,25].
The computational properties of the model are later

tested in a reservoir computing setting [26]: A linear
readout is trained to extract a desired input-output mapping
from the neural activity [Fig. 1(a)]. Collective nonlinear
interactions are fundamental to achieve complex mappings.
We thus need to go beyond mean-field methods to track the
nonlinear interactions on gradually increasing length
scales.
We make explicit all nonlinear terms in Eq. (1) by Taylor

expanding fðxÞ ¼ P

n fnx
n and likewise l. Also, the

momentum dependence of the Fourier transformed cou-
pling kernel ŵðkÞ ¼ P

� w�½1 − 1
2
σ2�k

2 þOðk4Þ� is kept
up to second order, enough to expose those terms that
characterize the system on a mesoscopic length scale. We
thus obtain, in the spatial domain,

τ
dh
dt

¼
X

∞

n¼1

½−mn þ gnΔþOðΔ2Þ�hn þ ffiffiffi

τ
p

I; ð2Þ

where Δ is the Laplace operator and OðΔ2Þ denotes
all terms proportional to spatial differential operators of

FIG. 1. (a) Model schematics. (b) Variance. Variance as a function of N for ḡ3 ¼ 0.1 and ḡ22 ¼ 0.01 (ḡ22 ≪ ḡ3 regime); blue diamonds:
simulation; dashed dark blue line: linear system; gray solid line: renormalized theory. (c) Flow of couplings. Direction of flow (arrows)
theoretically predicted by Eqs. (5) and (6). The transition line (black, dashed) separates the converging region (green) from the diverging
region (red). Region of nonphysical bistable regime in darker red. Simulated flow of couplings at l ¼ ðN=2Þ, with N ∈
f32; 48; 64; 96; 128; 192g (dark to light shading of blue markers; squares include N ¼ 256, 384) for different initial conditions
(yellow edge). Predicted flow by Eqs. (5) and (6) (gray solid curves, thicker within the range of simulated l). (d) Memory.
Reconstruction accuracy (0: complete forgetting; 1: perfect reconstruction) over time of a Gaussian input for different strengths of the
nonlinearities (legend). (e) Classification. Share of correctly assigned parity to 3-bit strings (blue curve) and standard deviation across
repeated trainings (shaded area), for ḡ2 ¼ ḡ3 ¼ 0.3. Decay timescales of the slowest (red), middle (orange), and fastest (green) modes
available at readout. Inset: spatial visualization of all 3-bit strings, colored by their parity. In (d) and (e): Gray dots or curve show
performance away from criticality with a nonvanishing mass m1, corresponding to a correlation length of a single lattice spacing.
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order ≥ 4. Couplings are conveniently renamed mn ≔
ln − fn

P

� w�, characterizing the local dynamics, and
gn ≔ 1

2
fn

P

� σ2�w�, quantifying the interaction across
space points. Notice μ, l0, and f0, corresponding to a
constant input causing hhi ≠ 0, are without loss of general-
ity set to zero [27].
The mass term m1 plays the role of a lower momentum

cutoff [20], defining the system’s spatial (∝ m
−1
2

1 ) and
temporal (∝ m−1

1 ) correlation lengths. Both diverge as
m1 → 0, identifying a critical point of the linear model.
To include the effect of nonlinearities close to this point,
standard expansion methods fail: perturbative corrections
diverge due to statistical fluctuations interacting on an
infinite range of length scales [20].
To tackle this issue, the renormalization group (RG)

[6,7,20] performs the integration of fluctuations gradually
over momentum scales Λ=l < jkj < Λ; progressively
increasing the flow parameter l ∈ ½1;∞Þ, we obtain a series
of effective field theories, each describing only degrees of
freedom on larger length scales, with k < Λ=l. Such
theories are defined on the rescaled quantities kl ≔ lk,
tl ≔ l−zt, ĥlðkl; tlÞ ≔ l−ζĥðk; tÞ, and Îlðkl; tlÞ ≔
lχ Îðk; tÞ. Rescaling makes all effective field theories look
formally equivalent to Eq. (2), differing only by the values of
the couplingsmnðlÞ and gnðlÞ, which becomel-dependent.
This dependence accounts for rescaling and for indirect
interactions mediated by marginalized degrees of freedom.
The couplings’ flowwithl therefore characterizes nonlinear
interactions on different length scales and, thus, the type of
critical behavior featured by the system. For example, the
flow running into a fixed point is a characteristic of critical
systems with scale invariance.
First consider the flow due to rescaling alone. This

corresponds to dimensional analysis and the mean-field
approach, neglecting the contribution of fluctuations. We
choose z ¼ 2, ζ ¼ ½ðdþ 2Þ=2�, and χ ¼ ½ðd − 2Þ=2� so that
g1, τ, and the input variance D are at a fixed point (i.e., do
not rescale). For d ≥ 2 all couplings not appearing explic-
itly in Eq. (2) then rapidly flow to 0 with some negative
power of l. These couplings are termed irrelevant and can
be neglected at large scales l. The couplings mnðlÞ ¼
l2−ðn−1Þ½ðd−2Þ=2�mnð1Þ diverge at d ¼ 2 as ∼l2. They are
termed relevant, meaning they must be fine-tuned to 0 to be
at a fixed point. Fine-tuning here implies balance of
inhibitory and excitatory inputs [27], often observed in
brain networks as a necessary condition for criticality [34].
The couplings gnðlÞ ¼ l−ðn−1Þ½ðd−2Þ=2�gnð1Þ vanish for
d > 2, ∀ n ≥ 2. For these spatial dimensions, mean-field
theory is usually accurate: all nonlinear terms in Eq. (2) are
negligible at large scales, thus fluctuations have almost no
interactions and can be neglected. Dimensional analysis
predicts d ¼ 2 as the upper critical dimension at which the
gn instead do not scale and are thus termed marginal: their

flow is driven by fluctuations alone and thus must be
investigated with more sophisticated methods, like the RG.
The mean-field analysis above allows us to determine the

form of the effective theory describing the critical system
at mesoscopic scales, where irrelevant couplings are
negligible

τ
dh
dt

¼ Δðg1hþ g2h2 þ g3h3Þ þ
ffiffiffi

τ
p

I: ð3Þ

At such scales, the effective field h describes neural
populations exchanging activity with nearest neighbors
via a diffusive process, expressed by the Laplace operator
Δ [35]. Among the marginal couplings gn, we keep only the
first n ≤ n0 ¼ 3. As we detail in the Supplemental Material
[27], we can assume neural activity to mainly explore a
limited range of the gain function [36,37], which can
therefore be locally approximated with a polynomial. We
choose n0 ¼ 3 to keep a minimal approach [for n0 ¼ 2,
Eq. (3) would be unstable]. Equation (3) has been proposed
as an alternative to the Kardar-Parisi-Zhang (KPZ) model
[38,39], both describing the dynamic growth of interfaces.
The original KPZ model [40] defines the KPZ universality
class, where the interaction flows into a strong-coupling
fixed point. Despite similarities, we show Eq. (3) to exhibit
a radically different type of critical behavior.
We start from Eq. (3) to compute the fluctuation-driven

part of the couplings’ flow. This is conveniently done by
mapping Eq. (3) to a field theory by means of the Martin-
Siggia-Rose–de Dominicis-Janssen formalism [41–44].
Flow equations are then computed diagrammatically to
one-loop order, within the framework of the infinitesimal
momentum shell Wilsonian RG for nonequilibrium sys-
tems [6,27]. Setting τ, g1, D, and a to unity and renaming
ḡn ≔ ðD=g1Þ½ðn−1Þ=2�ðgn=g1Þ puts Eq. (3) in dimensionless
form, so only ḡ2 and ḡ3 remain as parameters. Defining
s ≔ ð2πÞ−1 lnðlÞ, the differential flow equations take the
form

1

g1

dg1
ds

¼ 3

2
ḡ3 − ḡ22; ð4Þ

dḡ22
ds

¼ −
27

2
ḡ3ḡ22 þ 7ḡ42; ð5Þ

dḡ3
ds

¼ −
15

2
ḡ23 þ 14ḡ3ḡ22 − 4ḡ42; ð6Þ

showing that ḡ2 and ḡ3 alone drive the flow. The Laplace
operator in front of the nonlinear terms in Eq. (3) protects
D, τ, andmn from fluctuation corrections [27], so their flow
is determined by the mean-field analysis above. Figure 1(c)
shows the flow vector field in the ḡ3 − ḡ22 plane. A line
ðḡ22=ḡ3Þ ¼ ½ð7þ ffiffiffiffiffiffiffiffi

145
p Þ=8� determines a transition between

a diverging and converging behavior.
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Below the transition line, the couplings vanish, flowing
into the Gaussian fixed point (ḡ2 ¼ ḡ3 ¼ 0). Differently
than in a mean-field scenario, however, the flow is
logarithmically slow in l, characteristic of marginal cou-
plings at the upper critical dimension. This means inter-
actions are effectively present on all length scales. As an
extreme example, from the length scale of individual
neurons (Lmin ∼ 10 μm [45], Chap. 1) to that of the whole
cortex (Lmax ∼ 10−0.5 m [46], Chap. 9) nonlinearities
reduce only by a factor ln ½l ¼ ðLmax=LminÞ� ∼ 10. This
is known as Gell-Mann–Low criticality, the archetypal
behavior underlying renormalizability of quantum field
theories, such as quantum electrodynamics (QED) [19,20],
(Sec. V). At large scales, the power law scaling exponents
z, ζ, and χ maintain their mean-field values, since inter-
actions eventually vanish. However, logarithmic correc-
tions must be included due to the slowness of the flow. One
example of this effect can be seen in the scaling of the
variance hh2i as a function of N [Fig. 1(b)]. As we detail in
the Supplemental Material [27], such logarithmic correc-
tions may appear as weak departures of critical exponents
from their mean-field value, in a way that depends on the
current system’s dynamical state.
A difference to a prototypical Gell-Mann–Low theory is

the presence of an infinite number of marginal couplings
gn, rather than a single one, the charge in QED. This, in
principle, allows for the existence of an infinite number of
fixed points. Determining analytically whether these are
attractive, however, is a difficult task [39]. In neglecting gn,∀ n > 3, we are implicitly assuming the Gaussian fixed
point to be stable, with a sufficiently large basin of
attraction to attract the flow from any initial gn. We
therefore test the validity of the flow equations numerically,
by integrating Eq. (3) with the Euler-Maruyama algorithm
[47]. Simulations are restricted to ḡ22 < 3ḡ3 [Fig. 1(c)], due
to the occurrence of an unphysical bistable regime above
such boundary [27].
We simulate systems of increasing size N, which limits

the extent of correlations. By measuring correlation func-
tions of the neural field h, we extract the value of the flown
couplings at different length scales l ¼ ðN=2Þ and initial
conditions [27], shown in Fig. 1(c). Below the transition
line, we observe good qualitative agreement between the
simulated and predicted flow. Quantitative departures from
predictions are expected, given the approximation made to
one-loop order in fluctuations and to third order in the
expansion of f. This approximation suffices to qualitatively
confirm the running of the flow towards the Gaussian fixed
point. Higher orders could be easily included, if needed,
at the relatively low cost of computing more Feynman
diagrams.
Above the transition line, the flow equations in the given

approximation become unreliable. Indeed, they predict the
divergence of the flow, running into ðḡ2; ḡ3Þ ¼ ð∞;−∞Þ.
The flow’s divergence could signal the presence of a strong

coupling fixed point somewhere above the transition line,
into which the flow eventually converges. This occurs, for
example, in the KPZ model for d ≥ 3, where an analogous
transition point exists [48]. Simulations, however, do not
show this behavior (at least not in the entire region ḡ22 < 3ḡ3
that can be simulated). In fact, Fig. 1(b) (squares) suggests
that the flow, even when starting above the transition line,
still heads towards the Gaussian fixed point, making a
u-turn similar to when starting close and below such line
(triangles). This is confirmed by additional simulations
considering larger initial values of the couplings, which
show that the flow always runs into the ḡ3 ≫ ḡ22, Gell-
Mann–Low regime, logarithmically approaching the
Gaussian fixed point; see the Supplemental Material
[27], Fig. S1(b). In this regime, the flow equations in
the given approximation yield reliable quantitative pre-
dictions. This is exemplified by the measured neural
field variance hh2i as a function of N being well predicted
by theory [Fig. 1(b)]. In the limit N → ∞, we predict

hh2i ∼ ½4πg1ðlÞ�−1 ln ðN=2Þ, with l¼! ðN=2Þ [27]. The l
dependence of g1 shows a logarithmic correction with
respect to the linear case, in which g1ðlÞ ¼ 1 ∀ l.
We have so far demonstrated that the system showcases

criticality of the Gell-Mann–Low kind. The question
remains on why, among types of criticality, this one would
be especially useful for computation. Information process-
ing may benefit from a balance between a linear behavior,
which naturally supports information storage and trans-
mission, and a nonlinear one, necessary for computation.
The Gell-Mann–Low criticality implements such a balance
by sitting in-between a mean-field and strong coupling
fixed point scenario. We exemplify this by training the
system Eq. (3) to solve example tasks by what is known as
reservoir computing [Fig. 1(a)] [26]: A structured input s is
applied at some time tin as a perturbation hðx; tinÞ þ sðxÞ.
At a later time tout, a linear readout

P

x WðxÞhðx; toutÞ is
taken and the parameters WðxÞ are trained with gradient
descent.
We first focus on memory; for concreteness, consider the

Fischer memory curve. In the linear case, it decays with
time as t−2 and is expected to be optimal [49]. Intuitively
speaking, the signal distortion caused by nonlinearities
makes it harder to retrieve information on past inputs (some
network structures may, of course, be fine-tuned to have an
optimal interplay with nonlinearities which increases
memory, for example by active noise suppression [50],
but this does not occur in our model). In the Gell-Mann–
Low regime, nonlinearities flow towards zero, rather than
to a strong coupling fixed point. We thus expect them to not
worsen the power law decay found in the optimal linear
case; rather causing only small logarithmic corrections.
Inspired by these theoretical grounds, we train N2 linear
readouts to reconstruct a Gaussian-shaped input at some
time t after injection, recording the reconstruction accu-
racy [27] [Fig. 1(d)]. As expected, increasing the strength
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of nonlinearities, the accuracy’s power law exponent does
not deviate appreciably from the mean field, linear case:
performance is only worsened by a constant shift in double
logarithmic scale.
In contrast to a mean-field scenario, however, nonlinear

interactions vanish only logarithmically slowly. They thus
remain effective on practically all length scales, allowing
the system’s degrees of freedom to interact and to collec-
tively perform computation. We exemplify this by training
two linear readouts to correctly classify the parity of 3-bit
strings [27]. The task is not linearly separable: no plane can
correctly separate the strings in the two categories [see
Fig. 1(e) inset]. Nonlinear dynamics are therefore necessary
to expand the input’s dimensionality, enabling linear
separation. The input string’s nth bit is encoded by the
sign of a perturbation of the Fourier mode of momentum
kn ¼ ðπ − n4π=NÞê1, right below the high momentum
cutoff π. The linear readout is taken on a low-pass filtered
h, restricted to momenta < jk3j. Thus nonlinear dynamics
are further necessary to transfer information from the input
to the readout modes. Figure 1(e) indeed shows successful
training. Performance decays on a timescale between those
of the slowest and the fastest modes, suggesting their
collective interaction to be employed to perform the task.
The modes’ responses shown in the Supplemental Material
[27] further imply this—see Fig. S3.
In conclusion, we provide a renormalized theory of neural

network dynamics to uncover the structure of nonlinear
interactions across scales, so far inaccessible by mean-field
methods. This framework opens the door to the wealth of
universality classes [6,7], beyond mean field, that may lie
behind critical brain activity. We argue that beyond mean-
field behavior is fundamental for computation, and provide
tools to quantitatively address nonlinear signal transforma-
tions at a dynamical critical point. Applied to the stochastic
Wilson-Cowan model, we find a new form of criticality,
which is robust to the biologically plausible external drive:
At the relevant dimension d ¼ 2, critical behavior is of the
Gell-Mann–Low kind; in contrast to mean-field behavior,
nonlinear couplings, fundamental for computation, here
remain relevant on all length scales. Their slowly vanishing
flow, however, does not alter the mean-field critical expo-
nents to leading order. This may explain why previous works
might have overlooked beyond mean-field behavior.
It would be interesting to explore whether this, or other

types of criticality emerge in more complex models. For
example, in models that feature multiple cortical layers,
collective behavior within a column may influence criti-
cality along the cortical surface. The structure of hierar-
chical networks is also a parameter, other than the synaptic
strength here considered, that can tune systems into
criticality and interestingly extend it to broad regions in
parameter space [51]. In general, the here presented
methodology is applicable to any stochastic dynamical
system; specifically to neural network models, some of

which are even formulated as field theories from the outset
[35,52]. Of particular interest are models that reproduce
neural avalanches in simulations [35], or predict their
exponents from scaling considerations [52], which have
so far been restricted to the mean-field regime, for d > 4.
State-dependent departures from mean-field exponents in a
Gell-Mann–Low theory are reminiscent of the recently
observed dependence of neural avalanche exponents on the
neural activity’s coefficient of variation [53]. It would thus
be interesting to see if Gell-Mann–Low criticality also
emerges in these models.
RG techniques are also being applied to artificial neural

networks [54,55]. In the context of reservoir computing, we
argue that Gell-Mann–Low criticality supports a computa-
tionally optimal balance between linear and nonlinear dynam-
ics. Our analysis may also be extended to recurrent networks
with trainable hidden weights that are amenable to field-
theoretical formulations [56–58], further investigating the
relation between criticality and computation. In general, the
here exposed link between neural field theory, the KPZmodel
central to nonequilibrium statistical physics, and quantum
field theory presents a stepping stone to transfer expertise from
these fields, where RG methods are widely used.
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