تولد دوباره قاعده بورن : داستان مرموز ظهور واقعیت فیزیکی از دل ریاضیات انتزاعی کوانتومی (قسمت اول)

0

وقتی سخن از نظریه کوانتومی به میان می‌آید، به احتمال زیاد اولین چیزی که به ذهن می‌رسد غرابت و اسرارآمیز بودن آن باشد و دقیقا به همین دلیل است که بسیاری از حوزه‌های شبه علم، از پسوندهای کوانتومی برای مجاب کردن عوام استفاده می‌کنند. در مورد غرابت‌های این نظریه به وفور در دیپ لوک سخن گفته‌ایم، اما این‌ بار روی موضوعی دست گذاشته‌ایم که شاید عمیق‌ترین پرسش بی‌جواب درباره‌ی این نظریه باشد: قاعده بورن ، پلی که ریاضیات مکانیک کوانتومی را به دنیای قابل مشاهده‌ و واقعی ما وصل می‌کند. پلی که از قضا خیلی هم خوب کار می‌کند، اما به طرز خنده‌داری واقعا نمی‌دانیم چرا؟! در ادامه شما را به مطالعه‌ی اولین قسمت از یک مقاله سه قسمتی به قلم فیلیپ بال دعوت می‌کنیم که به تازگی از وب‌سایت کوانتامگزین منتشر شده است. با دیپ لوک همراه باشید…

همه می‌دانند که مکانیک کوانتومی، نظریه‌ی عجیبی است، اما ضرورتا نمی‌دانند چرا؟ باور بر این است که دنیای کوانتومی به خاطر برهم‌ نهی‌اش، اصل عدم قطعیتش و درهم تنیدگی‌اش، واقعا عجیب است. چیزی که مکانیک کوانتومی تا این اندازه عجیب کرد، اصل مشهور عدم قطعیت سال ۱۹۲۷ یا درهم تنیدگی سال ۱۹۳۵ نبود، بلکه ماکس بورن در سال ۱۹۲۶ این غرابت را به مکانیک کوانتومی اعطا کرد. او پیشنهاد داد که راه درست تفسیر ماهیت موجی ذرات کوانتومی، این است که آنها را به صورت موج‌های احتمال ببینیم. بورن اظهار داشت که معادله‌ی موج (که سال قبلش توسط شرودینگر ارائه شده بود)، اساسا یک مولفه‌ی ریاضی برای محاسبه‌ی شانس‌ مشاهده‌ی یک نتیجه‌ی خاص در یک آزمایش است. به عبارت دیگر، قاعده‌ی بورن، نظریه‌ی کوانتومی را به آزمایش مربوط می‌کند. اصلا همین قاعده است که مکانیک کوانتومی را یک نظریه‌ی علمی می‌کند، نظریه‌ای که می‌تواند پیش‌بینی‌هایی قابل آزمون انجام دهد. لوییس ماسانس (Lluís Masanes) از کالج لندن می‌گوید:

قاعده‌ی بورن، ارتباط حیاتی بین اشیای ریاضی انتزاعی نظریه‌ی کوانتومی و تجربه و جهان ملموس است

مشکل این است که قاعده بورن، واقعا چیزی بیشتر از یک حدس هوشمندانه نبود! در واقع بورن این قاعده را بدون هیچ دلیل بنیادی پیشنهاد کرد! آدان کابلو (Adán Cabello)، نظریه‌پرداز کوانتومی دانشگاه سویای اسپانیا می‌گوید:

قاعده بورن یک شهودِ بدون توجیه دقیق بود،‌ اما کار کرد!

و هنوز پس از گذشت بیش از ۹۰ سال، هیچ کس نتوانسته دلیل آن را توضیح دهد. بدون قاعده بورن نمی‌توان نشان داد مکانیک کوانتومی درباره‌ی ماهیت واقعیت چه می‌گوید. جیولی چیریبلا (Giulio Chiribella) متخصص بنیان‌های مکانیک کوانتومی از دانشگاه هنگ‌کنگ می‌گوید:

درک قاعده بورن، به عنوان راهی برای درک تصویر دنیای نهفته در نظریه‌ی کوانتومی، بسیار مهم است.

چندین پژوهشگر تلاش کرده‌اند تا قاعده بورن را از اصول بنیادی‌تر بدست آورند، اما هیچ‌یک از آنها به طور گسترده‌ای پذیرفته نشده‌اند. اکنون ماسانس و همکارانش، توماس گالی (Thomas Galley) از موسسه فیزیک نظری پریمیتر در واترلوی کانادا و مارکوس مولر (Markus Müller) از موسسه اپتیک کوانتومی و اطلاعات کوانتومی وین، راه جدیدی برای استخراج این قاعده از اصول عمیق‌تر نظریه کوانتومی پیشنهاد کرده‌اند، رویکردی که می‌تواند توضیح دهد مکانیک کوانتومی چطور به صورت عمومی‌تر از طریق فرآیند اندازه‌گیری به آزمایش ارتباط می‌یابد. ماسانس می‌گوید:

ما تمام ویژگی‌های اندازه‌گیری‌ در نظریه کوانتوم را بدست می‌آوریم: یعنی سوالات، پاسخ‌ها و احتمال رخداد پاسخ‌ها.

این یک ادعای بزرگ است. این سوال که اندازه گیری در مکانیک کوانتومی به چه معناست، از روزهای ابتدایی تولد آن، یعنی از زمان اینشتین و شرودینگر، سوال مهم و چالش‌برانگیزی بوده و بعید به نظر می‌رسد که این پیشنهاد، حرف آخر باشد. اما این رویکرد ماسانس و همکارانش، مورد ستایش فیزیکدانان قرار گرفته است. چیریبلا می‌گوید من آن را بسیار دوست دارم. کابلو می‌گوید:

این کار، نوع تمرین پالایش است، راهی برای خلاص کردن مکانیک کوانتومی از شر اجزای اضافی‌اش و این کار، قطعا یک وظیفه‌ی مهم است. این اجزای اضافی، علامتی هستند که نشان می‌دهند ما نظریه کوانتومی را کاملا نفهمیده‌ایم.

معما کجاست؟

شرودینگر در سال ۱۹۲۵، معادله‌اش را به عنوان توصیفی از پیشنهادی که لویی دوبروی، سال گذشته‌اش مطرح کرده بود (مبنی بر اینکه ذرات کوانتومی می‌توانند مانند امواج رفتار کنند)، نوشت. معادله‌ی شرودینگر، یک تابع موج به یک ذره نسبت می‌دهد (که با علامت Ψ {بخوانید سای} نمایش داده می‌شود) به گونه‌ای که با آن می‌توان رفتار آینده‌ی ذره را پیش‌بینی کرد. تابع موج، یک عبارت ریاضی محض است و مستقیما به هیچ چیز قابل مشاهده‌ای ارتباط نمی‌یابد. پس سوال این بود: چگونه باید آن را به ویژگی‌هایی که مشاهده‌پذیرند، ربط داد؟ شرودینگر نخست، فرض کرد که بزرگی تابع موج در برخی نقاط فضا با چگالی ذره‌ی کوانتومی در آن نقطه، متناظر است.

اما بورن استدلال کرد که بزرگی تابع موج به احتمال مربوط است یا به طور دقیق‌تر، بزرگی تابع موج با احتمال اینکه ذره را پس از اندازه گیری،در آن مکان پیدا کنید، متناظر است. بورن در سخنرانی جایزه‌ی نوبلش در سال ۱۹۵۴ ادعا کرد این ایده، تعمیمی از داستان فوتون‌هاست که در سال ۱۹۰۵ توسط اینشتین پیشنهاد شده بودند. بورن گفت، اینشتین مربع بزرگی موج نوری را به عنوان چگالی احتمال رخداد فوتون‌ها تفسیر کرده‌ بود. این مفهوم می‌توانست در مورد تابع موج هم به کار رود. اما شاید این دلیل، یک توجیه پس‌رفتی بوده است. بورن اول فکر کرد که بزرگی سای، این احتمال را می‌دهد، اما به سرعت، نظرش را عوض کرد و تصمیم گرفت مربع سای (یا مربع مقدار مطلقش)، احتمال مورد نظر را بدهد. اما سریعا معلوم نشد کدامیک از این دو، درست است. متئوس آراجو (Mateus Araújo) نظریه‌پرداز کوانتومی دانشگاه کُلن آلمان می‌گوید:

واقعا زشت است که نمی‌دانیم این قاعده چرا کار می‌کند، اما می‌دانیم اگر آن را دور را بیندازیم، نظریه کوانتومی، از هم می‌پاشد.

به هر حال، این خودسری قاعده بورن شاید کمترین چیز عجیب در مورد آن باشد. در بیشتر معادلات فیزیکی، متغیرها به ویژگی‌های عینی سیستمی که توصیف می‌کنند، اشاره دارند: مثلا جرم یا سرعت اجسام در قانون حرکت نیوتون، اما در مورد قاعده بورن، از این خبرها نیست؛ تابع موج، یک ویژگی عینی نیست. در واقع، واضح نیست که آیا تابع موج، چیزی در مورد ماهیت کوانتومی خودش می‌گوید یا نه، مثلا اینکه در هر لحظه‌ از زمان، کجاست؟ در عوض تابع موج به ما می‌گوید اگر انتخاب کنیم که ببینیم، چه چیزی خواهیم دید. به نظر می‌رسد تابع موج، جهت اشتباهی دارد: نه به سمت سیستم در حال مطالعه، بلکه به سمت تجربه‌ی آزمایشگر از آن. چیریبلا می‌گوید:

چیزی که نظریه‌ی کوانتومی را معماگونه می‌کند، قاعده بورن به معنای راهی برای محاسبه‌ی احتمالات نیست، بلکه این حقیقت است که نمی‌توانیم اندازه‌ گیری ها را با معلوم کردن ویژگی‌های از پیش موجود سیستم، تفسیر کنیم.

مورد دیگر اینکه، دستگاه ریاضی بدست آوردن این احتمالات، فقط زمانی می‌تواند نوشته شود که شما تصریح کنید چگونه دارید به سیستم نگاه می‌کنید. اگر اندازه‌ گیری متفاوتی انجام دهید، ممکن است احتمالات متفاوتی را نیز محاسبه کنید، حتی با وجود اینکه به نظر می‌رسد در حال اندازه گیری همان سیستم در دفعات مختلف هستید. این همان دلیلی است که نشان می‌دهد چرا تجویز بورن برای تبدیل توابع موج به نتایج اندازه‌ گیری، تمام آن ماهیت متناقض نظریه کوانتومی را در خود دارد: این حقیقت که ویژگی‌های مشاهده‌پذیر اشیای کوانتومی به شیوه‌ای احتمالاتی از خود عمل اندازه‌ گیری ظهور می‌کنند. کابلو می‌گوید:

اصل موضوعه‌ی بورن در مورد احتمال، جایی است که دقیقا معما در آن نهفته است.

بنابراین اگر می‌توانستیم بفهمیم قاعده بورن از کجا می‌آید، می‌توانستیم بفهمیم مفهوم ترسناک اندازه گیری در نظریه کوانتومی، واقعا به چه معناست!

ادامه دارد…

دکترای شیمی کوانتومی/فیزیک اتمی از دانشگاه شهید بهشتی. سردبیر دیپ لوک. مشتاق دیدن، فهمیدن و کشف‌ کردن رازهای شگفت‌انگیز هستی، به ویژه‌ دنیای اتم‌های سرکش.

ارسال نظر